
SWMF-ESMF Interoperability and Model Coupling Workshop 1SWMF-ESMF Interoperability and Model Coupling Workshop26 February 2003 126 February 2003

The
Common Component Architecture

as a
Foundation for Domain-Specific

Computational Frameworks

David E. Bernholdt (ORNL),
Dan Katz (JPL), Gary Kumfert (LLNL), Jay

Larson (ANL), and Alan Sussman
(Maryland)

on behalf of the CCA Forum
Research supported by the Mathematics, Information and Computational Sciences Office, Office of
Advanced Scientific Computing Research, U.S. Dept. of Energy. Oak Ridge National Laboratory is
managed by UT-Battelle, LLC for the US Dept. of Energy under contract DE-AC-05-00OR22725

SWMF-ESMF Interoperability and Model Coupling Workshop 226 February 2003

Component-Based Software
Engineering

• CBSE methodology is emerging, especially from
business and internet areas

• Software productivity
– Provides a “plug and play” application development

environment
– Many components available “off the shelf”
– Facilitates reuse and interoperability of components

• Software complexity
– Components encapsulate much complexity into “black boxes”
– Plug and play approach simplifies applications & adaptation
– Model coupling is natural in component-based approach

• Software performance (indirect)
– Plug and play approach and rich “off the shelf” component

library simplify changes to accommodate different platforms

SWMF-ESMF Interoperability and Model Coupling Workshop 326 February 2003

What are Components?

• No universally accepted definition…yet

• A unit of software deployment/reuse
– i.e. has interesting functionality
– Ideally, functionality someone else might be able to (re)use

• Interacts with the outside world only through well-
defined interfaces
– Implementation is opaque to the outside world
– Components may maintain state information
– But external access to state info must be through an interface (not a

common block)

• Can be composed with other components
– “Plug and play” model to build applications
– Composition based on interfaces

SWMF-ESMF Interoperability and Model Coupling Workshop 426 February 2003

What is a Component
Architecture?

• A set of standards that allows:
– Multiple groups to write units of software (components)…
– And have confidence that their components will work with

other components written in the same architecture

• These standards define…
– The rights and responsibilities of a component
– How components express their interfaces
– The environment in which are composed to form an

application and executed (framework)
– The rights and responsibilities of the framework

SWMF-ESMF Interoperability and Model Coupling Workshop 526 February 2003

Domain-Specific vs General
Component Architectures

Domain-specific
• Often known as

“frameworks”
• Provide a significant

software infrastructure to
support applications in a
given domain
– Often attempts to generalize

an existing large application
• Often hard to adapt to use

outside the original domain
– Tend to assume a particular

structure/workflow for
application

• Relatively common

General
• Provide the infrastructure to

hook components together
– Domain-specific infrastructure

can be built as more
components

• Usable in many domains
– Few assumptions about

application
– More opportunities for reuse

• Better supports model
coupling across traditional
domain boundaries

• Relatively rare at present
– Commodity component

models often not so useful in
HPC scientific context

SWMF-ESMF Interoperability and Model Coupling Workshop 626 February 2003

What is the CCA?
• A component model specifically designed for high-

performance scientific computing
• Supports both parallel and distributed applications
• Designed to be implementable without sacrificing

performance
• Minimalist approach makes it easier to componentize

existing software

• A tool to enhance the productivity of scientific
programmers
– Facilitate and promote interoperability, reuse, plug-and-

play,…
– Make the hard things easier, make some intractable things

tractable
– Not a magic bullet

SWMF-ESMF Interoperability and Model Coupling Workshop 726 February 2003

• Port (aka interface)
– Procedural interface (not just dataflow!)
– Like C++ abst. virtual class, Java interface
– Uses/provides design pattern

• Component
– A unit of software deployment/reuse (i.e. has interesting functionality)
– Interacts with the outside world only through well-defined interfaces
– Implementation is opaque to the outside world
– Components are peers

• Framework
– Holds components during application composition and execution
– Controls the “exchange” of interfaces between components (while ensuring

implementations remain hidden)
– Provides a small set of standard, ubiquitous services to components

• CCA spec doesn’t specify a framework per se, so components can be constructed
to provide framework-like services

Basic CCA Terminology

Linear
Function

Fun

Integrator

Result Fun

Config

SWMF-ESMF Interoperability and Model Coupling Workshop 826 February 2003

CCA-Related Organizations

CCA Forum
• Standards body for CCA

– CCA Specification

• Promote/facilitate interface
development

• Goal: interoperability
• Open membership
• Quarterly meetings

– Dates set ~1 year ahead
– Next 10-11 April, Salt Lake

City

CCTTSS

• DOE-funded SciDAC Center

• Develop “prototype” stage to
full production environment

• Understand of how to use
component architectures
effectively in HPC
environments

• Subset of CCA Forum
– ANL, LANL, LLNL, PNNL,

ORNL, SNL, Indiana, Utah

SWMF-ESMF Interoperability and Model Coupling Workshop 926 February 2003

CCA Research Thrusts and
Application Domains

• Frameworks
– Framework interoperability
– Language interoperability
– Deployment

• Scientific Components
– Data Components
– Linear Algebra
– Visualization & Steering
– …

• MxN Parallel Data
Redistribution
– Component-based
– Framework-based

• Application Outreach
– Education
– Best practices for use
– Chemistry, Climate

• Chemistry
• Combustion
• Climate Modeling (CCSM, ESMF)
• Meshing Tools (SciDAC TSTT)
• (PDE) Solvers (SciDAC TOPS)
• Supernova simulation
• Accelerator simulation
• Fusion
• ASCI C-SAFE
• …

SWMF-ESMF Interoperability and Model Coupling Workshop 1026 February 2003

A Component-Based Simulation and
Analysis Facility for Reacting Flows

• Developed a host of
components, scientific and
mathematical, to form a toolkit
for assembling flame
simulations

– Integrator, spatial
discretizations, chemical rates
evalutator, transport property
models, timers etc.

– Structured adaptive mesh,
load-balancers, error-
estimators (for
refining/coarsening)

– In-core, off-machine, data
transfers for post-processing

• Jaideep Ray and Sophia
Lefantzi (SNL)

• James Kohl (ORNL)
• Sameer Shende (U. Oregon)

• Components are usually in C++ or
wrappers around old F77 code

• Kernel for a 3D, adaptive mesh low
Mach number flame simulation
capability in SNL, Livermore

SWMF-ESMF Interoperability and Model Coupling Workshop 1126 February 2003

Scientific Summary

• H2-Air ignition on a structured adaptive mesh, with an operator-split
formulation

• RKC for non-stiff terms, BDF for stiff
• 9-species, 19-reactions, stiff mechanism
• 1cm x 1cm domain; max resolution = 12.5 microns
• TAU for timing.

Evolution of the
temperature field

SWMF-ESMF Interoperability and Model Coupling Workshop 1226 February 2003

Wiring Diagram for the Combustion
Code

SWMF-ESMF Interoperability and Model Coupling Workshop 1326 February 2003

Animation of the Temperature Field

SWMF-ESMF Interoperability and Model Coupling Workshop 1426 February 2003

Libraries vs. (CCA) Components

• Component environments
rigorously enforce interfaces

• Can have several versions of
a component loaded into a
single application

• Component needs add’l
code to interact w/
framework
– Constructor and destructor

methods
– Tell framework what ports it

uses and provides
• Invoking methods on other

components requires slight
modification to “library” code

Component

Library code
(slightly modified)

Framework interaction
code (new)

SWMF-ESMF Interoperability and Model Coupling Workshop 1526 February 2003

Typical Component Lifecycle
• Composition Phase

– Component is instantiated in framework
• Component declares what interfaces is uses and provides

– Component interfaces are connected appropriately

• Execution Phase
– Code in components uses functions provided by another

component

• Decomposition Phase
– Connections between component interfaces may be broken
– Component may be destroyed

Phases may be intermixed
Steps may be under human or software control

SWMF-ESMF Interoperability and Model Coupling Workshop 1626 February 2003

Framework Mediates
Component Interactions

Integrator

Integrator code
getPort(Fun)

y=Fun(x)
releasePort(Fun)

Framework interaction code
constructor setServices destructor

CCA.Services
provides Result

uses Fun

LinearFunction

Function code
Fun(x) = 3 * x + 17

CCA.Services
provides Fun

Framework interaction code
constructor setServices destructor

1

2

1’

2’3

5

46

Assembly Phase
Execution Phase
Assembly Phase

SWMF-ESMF Interoperability and Model Coupling Workshop 1726 February 2003

Importance of Provides/Uses
Pattern for Ports

• Fences between components
– Components must declare both

what they provide and what
they use

– Components cannot interact
until ports are connected

– No mechanism to call anything
not part of a port

• Ports preserve high
performance direct connection
semantics…

• …While also allowing distributed
computing

Integrator Linear Fun
Provides/Uses

Port

Direct Connection

Integrator

Linear Fun
Uses
Port

Provides
Port

Network
Connection

SWMF-ESMF Interoperability and Model Coupling Workshop 1826 February 2003

“Direct Connection” Maintains
Local Performance

• Components loaded into separate namespaces in the
same address space (process) from shared libraries

• getPort call returns a pointer to the port’s function table
• Calls between components equivalent to a C++ virtual

function call: lookup function location, invoke
• Cost equivalent of ~2.8 F77 or C function calls
• All this happens “automatically” – user just sees high

performance
• Description reflects Ccaffeine implementation, but similar

or identical mechanisms are in other direct connect fwks

SWMF-ESMF Interoperability and Model Coupling Workshop 1926 February 2003

Framework Stays “Out of the
Way” of Component Parallelism

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

• Each process loaded with the
same set of components wired
the same way

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

MCMD/MPMD also supported

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

SWMF-ESMF Interoperability and Model Coupling Workshop 2026 February 2003

Language Interoperability

• Existing language
interoperability
approaches are “point-
to-point” solutions

• Babel provides a unified
approach in which all
languages are
considered peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java

SWMF-ESMF Interoperability and Model Coupling Workshop 2126 February 2003

Babel Features

Scientific Interface Def. Lang. (SIDL)
• Objects: Interfaces, Abstract Classes,

Concrete Classes
• Methods: all public; virtual, static, final
• Mode: in, out, inout (like CORBA)
• Types: bool, char, int, long, float,

double, fcomplex, dcomplex,
array<Type,Dimension>, enum,
interface, class

• Babel includes…
– Code generator
– Runtime (linked into CCA

framework)
• Implemented using C-based

internal object representation (IOR)
• Server side: wrap implementation

in Babel-generated code to allow
calling from any language via IOR

• Client side: Use SIDL interface
definition to generate stubs to call
from client language to IOR

• Strives to allow natural-looking
code in each supported language

SIDL
interface

description

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so

SWMF-ESMF Interoperability and Model Coupling Workshop 2226 February 2003

Interfaces, Interoperability, and
Reuse

• Interfaces define how components interact…
• Therefore interfaces are key to interoperability and

reuse of components

• In many cases, “any old interface” will do, but…
• General plug and play interoperability requires

multiple implementations providing the same
interface

• Reuse of components occurs when they provide
interfaces (functionality) needed in multiple
applications

SWMF-ESMF Interoperability and Model Coupling Workshop 2326 February 2003

What the CCA isn’t…
• CCA doesn’t specify who owns “main”

– CCA components are peers
– Up to application to define component relationships

• “Driver component” is a common design pattern

• CCA doesn’t specify a parallel programming
environment
– Choose your favorite
– Mix multiple tools in a single application

• CCA doesn’t specify I/O
– But it gives you the infrastructure to create I/O components
– Use of stdio may be problematic in mixed language env.

• CCA doesn’t specify interfaces
– But it gives you the infrastructure to define and enforce them
– CCA Forum supports & promotes “standard” interface efforts

• CCA doesn’t require (but does support) separation of
algorithms/physics from data

SWMF-ESMF Interoperability and Model Coupling Workshop 2426 February 2003

Summary and Contacts
• CCA is a component environment for high

performance scientific computing
– Parallelism, Performance, Language support, Ease of

adoption
• Provides a foundation on which domain-specific

frameworks can be built
• Web site: http://www.cca-forum.org
• David Bernholdt <bernholdtde@ornl.gov>

– co-PI, Lead for User Outreach and Applications Integration
• Gary Kumfert <kumfert@llnl.gov>

– co-PI, Lead for Frameworks
• Jay Larson <larson@mcs.anl.gov>

– CCA Climate Applications Focus, CCSM, ESMF
• Rob Armstrong <rob@sandia.gov>

– CCA Forum head and SciDAC Center Lead PI

