
 1

The role of ontologies in agent-oriented systems.

Line Pouchard
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6367

pouchardlc@ornl.gov

Omer Rana
Department of Comp uter Science

Cardiff University
Cardiff, UK CX24 3XF
O.F.Rana@cs.cf.ac.uk

Abstract:
This paper describes the role of ontologies in
agent-oriented systems, and their importance for
a) interoperability of systems, and b) the
exchange of messages between agents. We
focus on the specifications proposed by the
Foundation for Intelligent Physical Agents
(FIPA) for standard components of an
architecture for agent-oriented systems. FIPA
content languages are also described and a brief
description of PSL, the Process Specification
Language, is provided as an example of an
ontology.
Keywords : agent-oriented systems, ontology,
agent communication language, FIPA, PSL.

1. Introduction
An ontology is a formal representation of the
concepts and axioms regulating a particular area
of knowledge. The definitions of concepts and
the axioms that constrain the use of these
definitions constitute an ontology. When limited
to a specific domain area, an ontology forms a
theoretical basis for the specified domain model.
For instance, the Process Specification
Language1 (PSL) developed at the National
Institute of Standards and Technology is an
ontology of manufacturing processes.
Ontologies have been developed on a large scale
with the aim of representing general concepts,
for instance the Cyc KB2 represents facts, rules
of thumbs and heuristics for reasoning about
objects and events of everyday life. Ontologies
have also been developed for specific domain
areas and disciplines. The scope of an ontology
defines its usability. Software tools such as
browsers, editors, syntax checkers and validators
are often available with specific domain
ontologies in order to make the ontologies usable
for that domain. Domain ontologies only will be
addressed here.

Software agents are software components that
periodically query their environment for changes
in variables important to them and can make

independent decisions regarding tasks based on
input received from the environment and their
pre-defined goals. Agents are autonomous when
they are able to make individual decisions based
on sensory inputs from their environment and
their actions will in turn affect that environment.
Agents communicate with one another towards
realizing the common goal of the system.
Agents that do not communicate with each other
for realizing this goal are a particular case. For
all purposes, agents exchange high-level
messages through an Agent Communication
Language (ACL) in order to perform specific
tasks and achieve the goals of the system or the
individual goals of each agent. Agents may be in
competition within a system, for instance
bidding agents in a market system: they still can
be seen as cooperating in the sense that they
participate in the ma rket. Agents may cooperate
more directly to foster a common goal, for
instance achieving the planning and distribution
of tasks in a logistics system. Agents are self-
contained units within the system, and the
internal architecture of each agent represents a
black box for the other agents. Agents can be
mobile if they can migrate their execution on
various machines while the execution is in
progress. Agents have been used successfully in
e-commerce, for information discovery and
integration on the Web, for fault diagnosis in
digital networks, in military planning and
logistics, and manufacturing.

2. Architecture of an Agent-
Oriented System
Inter-operability between organizations that have
developed software agent systems independently
becomes an important goal on the Web and for
enterprises in vertical integration, for instance.
There are many possible architectures for an
agent-oriented system, but interoperability
between agents developed at different times and
by different developers will only be guaranteed
through following standards for the development
of a system architecture. The Foundation for

 2

Intelligent Physical Agents (FIPA)3, is an
international ad hoc consortium of
representatives from industry and academia that
is proposing such standards for the development
of agent-based systems. FIPA is so named
because standard developers at an early stage
thought it might have applications for physical
agents and robots. This is no longer the case,
and FIPA focuses exclusively on software
agents. End-to-end interoperability between
heterogeneous agent systems is the proposed
goal of FIPA standards. Ontologies, because of
their reliance on semantics for message content,
play an important role in the exchange of
messages that agents send and, thus, for the
interoperability of agent-based systems.

One of the pillars of agent platforms based on
FIPA are the communicative acts that agents
engage in during their course of interaction
within the system. Software agents act upon
each other based on what they know to be true
about their internal state, and what they believe
about the environment. This metaphor is known
under the general phrase of a BDI architecture
where BDI stands for Beliefs, Desires,
Intentions. FIPA specifies the types of
communicative acts that agents can engage in,
and gives a semantic interpretation of these acts4.
In most cases, system developers who develop a
FIPA compliant system are encouraged to and
need only use the proposed types of
communicative acts, called performatives, and
not worry about their semantics. FIPA
performatives are so named by analogy to John
Searle’s speech acts5, according to which an
action is being accomplished by the enounciation
of types of sentences, such as a question being
asked, and an order being given. There are 22
FIPA performatives which include INFORM,
AGREE, CALL FOR PROPOSAL, CANCEL,
FAILURE, ACCEPT PROPOSAL, and 16
others6. Taken together the set of performatives
constitute an Agent Communication Language
(ACL). Before we review the structure of a
performative and the importance of ontologies
for each performative, we need to look at the
general architecture of a FIPA compliant
software system.

In order to achieve interoperability, FIPA
proposes an abstract architecture that allows
concrete realization of multiple architectures.
The components presently defined in the abstract
architecture are agent message transport, FIPA
ACL, directory services and content languages.

The Agent Management System and agent
mobility depend more closely on implementation
and their abstraction will be specified in the
future. Figure 1 shows the abstract components
of an agent-based system according to FIPA
specifications7.

In Figure 1, the Agent Management System
receives and maintains a list of existing agents in
the system and their locations, providing white
page services. The Directory and Facilitator
maintain service and registration location,
providing yellow pages services, and the
message transport system wraps the ACL
performatives exchanged by the agents in the
system. Several agent platforms and
development environments like FIPA-OS and
JADE use this architecture.

3. ACL performatives and
ontology attribute
An ACL performative is roughly structured like
an email message, and contains attributes
specifiying variables upon which the agent can
act. These include an attribute to designate a
particular ontology for the performative. An
example of a FIPA compliant performative is
given. It shows how the FIPA performative
INFORM can refer to the PSL ontology:
·(inform:sender (ORNLcollaborator3)

:receiver (PNNLcollaborator2)
:in -reply-to (PNNLcollaborator2 _

local_dstruct100)
:ontology (PSL)
:language (KIF)

Software

Agent
Management
System

Directory
Facilitator

Role
Agents

Message Transport Service

Agent Communication Language

Figure 1: Agent Management Model

Software Software

 3

:content (possibly_reusable@PSL
 PNNLcollaborator2
_goal187 (:type :id
:modifier :attributes

)
)
)
The ontology attribute is required and specifies a
content reference for the ACL performative in
the agent platform. All agents in the platform
that exchange messages need to refer to a
common data model. The set of concepts
contained in the data model constitutes the
ontology for the ACL performative. The
ontology may be more or less formally
expressed, with a formal expression indicating
that formal definitions for the concepts are given
as well as axioms constraining their usage. If the
ontology is simply declared without formal
definitions given to the concepts, agents can still
exchange messages as long as they refer to the
same ontology. However, interoperability with
other agents or with other platforms requires
translation between the various ontologies. That
translation will be based on ad hoc decisions by
the developer if the ontologies are not formally
expressed because, in this case, there are no
formal definitions to exchange.

For instance, an ACL performative may use the
concepts declared in an XML DTD (Data Type
Definition) for its ontology. However XML
does not provide a mechanism for expressing the
semantic meaning of the concepts contained in
the DTD, so that DTDs reconciliation can only
be ad hoc and not formal. An agent in the
system will only be able to communicate with
another agent if they both use the same DTD, or
if a translation between DTDs is provided.
Some scientific communities have reached a
consensus on one or several XML DTDs to
represent the concepts in their domain area; those
DTDs can be used as the basis for ontologies. If
these DTDs need to be extended for the purposes
of a particular system, the extensions specific to
a system may not directly translate into the
ontologies of other systems, thus impairing inter-
operability.

Ontologies may be expressed in FIPA SL8, KIF9,
DARPA Agent Markup Language
(DAML+OIL)10, Resource Description
Framework schemas (RDFs) developed at the
World Wide Web Consortium (W3C)11, and in a
variety of other languages. DAML ontologies
are developed for the Semantic Web, a W3C

effort to achieve interoperability of Web services
based on semantic exchanges. PSL, the Process
Specification Language developed at NIST is
expressed in KIF. FIPA SL proposes
specifications for a content language and for
inclusion in the FIPA Content Language Library
(FIPA CLL) 12. Five criteria are given for
inclusion in the CLL: 1) a good syntactic level of
development, i.e. one that allows the
implementation of a parser; 2) a clear and
intuitive semantics (although not necessarily
formal) that fits with the use of FIPA ACL; 3)
examples of a usage of such a language; 4)
substantial and clear documentation 5) a clear
indication of the utility of such a language and
how it may extend existing content languages or
directly support a single but very common agent
activity. FIPA SL proposes to reduce
expressivity in some subsets such as the minimal
subset FIPA-SL0 that is used for the Agent
Management Service ontology. Other content
languages included in the repository are FIPA
CCL where CCL stands for Constraint Choice
Language, FIPA-KIF, and FIPA-RDF.

4. Example: PSL
The Process Specification Language developed
at NIST is an ontology of manufacturing
processes that has achieved the level of New
Work Item in the International Standards
Organization (ISO 18629). There are currently
about 300 concepts and axioms in PSL, each
with its own definition expressed in the KIF13.
PSL is built upon a core ontology that contains 7
primitive relations, 2 primitive functions, and 2
constants. The primitive relations are object,
activity, activity-occurrence, timepoint, before,
occurrence-of, and participates -in. The primitive
functions are begin-of and end-of. The constants
are inf+ and inf -. In addition, core theories are
defined in the PSL outer core and include 6
theories that also specify primitive relations.
The primitive theories in the outer core are
Subactivity Theory, Theory of Occurrence Trees,
Theory of Discrete States, Theory of Atomic
Activities, Theory of Complex Activities and
Activity Occurrence. The core and outer core
describe general characteristics of manufacturing
processes and taken alone, they are not sufficient
to represent these processes. The various
domain areas that PSL covers are the usable
definitions for a particular domain. Terms in the
domain areas are defined in terms of extensions
that use the core and the outer-core. Figure 2

 4

shows how a Concept A for a particular domain
extension is represented in the PSL ontology

using concepts from the relevant Domain
Extension, PSL core and Outer-Core. Domain
extensions currently include Manufacturing
Planning and Scheduling. The domain extension
for discrete-event simulation is under way. A
particular application is said to be PSL compliant
when a translation for the concepts and axioms
of that application are defined using PSL
concepts and relations. Interoperability between
two applications is possible when the two
applications are PSL compliant. Interoperability
has been demonstrated between a process
planner software using an IDEF 3 representation
and a C++ scheduler14

5. Conclusion
This paper highlighted the importance of
ontologies for interoperability on the Web and in
other integration scenarios. The FIPA
architecture for agent-based systems was
described. The place of ontologies in these
systems was indicated to be an attribute of an
ACL performative. FIPA specifications for ACL
and content languages was discussed. Finally,
an example of an ontology for manufacturing
processes was given with PSL. Future work lies
in developing tools for manipulating PSL such as
the many tools that already exist for
DAML+OIL.

6. References

1 http://www.mel.nist.gov/psl/.
2http://www.cyc.com/products2.html
3For more details on FIPA and the proposed set
of standards, see Jonathan Dale and Ebrahim
Mamdani, “Open Standards for Interoperating
Agent-Based Systems,” in Software Focus,
Wiley and Sons, 2001, forthcoming.
http://www.fipa.org/resources/papers.html.
4FIPA Communicative Act Library
Specification,
http://www.fipa.org/specs/fipa00037/.
5John Searle, Speech Acts, Cambridge University
Press, 1969.
6FIPA Communicative Act Library
Specification,
http://www.fipa.org/specs/fipa00037/.
7FIPA Agent Management Specification,
www.fipa.org/specs/fipa00023/, FIPA Agent
Message Transport Service Specification,
www.fipa.org/specs/fipa00067/.
8FIPA SL Content Language Specification,
www.fipa.org/specs/fipa
9Genesereth, M. and R.E. Fikes. 1992.
“Knowledge Interchange Format (KIF), Version
3.0. Reference Manual.” Technical Report
Logic -92-1. Computer Science Department,
Stanford University, Stanford, CA. (Jan.).
10 http://www.daml.org/.
11 Status for Resource Description Format (RDF)
Model and Syntax Specification. World Wide
Web Consortium, http://www.w3c.org/RDF/.
12 FIPA Content Language Library Specification,
www.fipa.org/specs/fipa00007A
13 http://www.mel.nist.gov/psl/psl-ontology/.
14 For more details on interoperability with PSL,
see Line Pouchard et al., “Ontology Engineering
for Distributed Collaboration in Manufacturing,”
AIS2000. Artificial Intelligence and Simulation
Conference. March 2000, Tucson, AR.

The submitted manuscript has been authored by
a contractor of the U.S. Government under
Contract No. DE-AC-05-00OR22725.
Accordingly, the U.S. Government retains a non-
exclusive, royalty-free license to publish or
reproduce the published form of this
contribution, or allow other to do so, for U.S.
Government purposes. This research has been
sponsored by the National Institute of Standards
and Technology.

Domain Extension

PSL Outer core

PSL core

Domain Extension

ConceptA

Figure 2: The architecture of PSL
semantics

