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Sulfur-Iodine Process For Hydrogen Production
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High Temperature Sulfur-Iodine 
Process Limitation

(H2SO4 ⇔ H2O + SO3 ⇔ SO2 + H2O + ½O2)

• High-temperature steps are equilibrium steps: 
conversion is a function of temperature
− 31% at 625°C
− 79% at 725 °C
− 99% at 925°C

• The process can operate efficiently at lower 
temperatures if the reaction goes to 
completion at lower temperatures



Incomplete High-Temperature Reactions Lead To Massive 
Recycle Streams Within the Process and Low Efficiencies
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ORNL LDRD Proposed Solution

• Push equilibrium high-temperature reaction to 
completion at lower temperatures by removing 
reaction products

H2SO4 ⇔ SO3 + H2O ⇔ SO2 + H2O + 1/2 O2

• Membrane separation of O2, H2O, and SO2 from 
SO3 drives reaction to the right allowing high 
conversion at lower reaction temperatures

• Potential to reduce peak temperature to between 
650 and 750°C



Separation of the Sulfur Dioxide and Oxygen Drives 
the Reaction to Completion
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Idealized Iodine-Sulfur Inorganic-
Membrane Chemical Reactor
(Operating Temperature 650 to 750°)
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• Base technology developed for 
separation of uranium isotopes by 
gaseous diffusion
• ORNL maintains technology 

for DOE/NE
• Variants are sold 

commercially

• Choice of pore diameters

• Separative layer is applied to 
metal or ceramic support tube

• Layer thickness is 2µm or less 
yielding a high permeance at low 
pressure drop

• Support structure and layer made 
of variety of metals and ceramics

Inorganic Membranes



Portsmouth Gaseous Diffusion Plant: 
An Early Application of Inorganic Membrane Technology



Inorganic Membranes Are Applicable 
to Multiple Thermochemical Cycles

• Brown, Funk, and Showalter evaluated 
over 100 cycles

• Three of the top four cycles share the 
same sulfuric acid decomposition step
− Westinghouse
− Ispra Mark 13
− GA Sulfur-Iodine

• Technology covers multiple options



Conclusions

• Inorganic membranes are potentially an 
attractive option for  lower-temperature, 
efficient thermchemical cycles

• Many technical questions and issues that 
must be addressed
− Analysis underway
− Initial experimental data later this year 


