
February 5, 2003 11:51 WSPC/Trim Size: 9in x 6in for Proceedings aizu_08

ADVANCES IN THE SHELL-MODEL DESCRIPTION OF

WEAKLY BOUND AND UNBOUND NUCLEAR STATES�

N. MICHEL1�3, W. NAZAREWICZ2�4, J. OKO LOWICZ1;5

AND M. P LOSZAJCZAK1

1 Grand Acc�el�erateur National d'Ions Lourds (GANIL),
CEA/DSM { CNRS/IN2P3, BP 55027,

F-14076 Caen Cedex 05, France

2 Department of Physics and Astronomy, The University of Tennessee,
Knoxville, Tennessee 37996, USA

3 Physics Division, Oak Ridge National Laboratory,
P.O. Box 2008, Oak Ridge, TN 37831, USA

4 Institute of Theoretical Physics, Warsaw University,
ul. Ho_za 69, PL-00681 Warszawa, Poland

5 Institute of Nuclear Physics, PL-31342 Krak�ow, Poland

We report on recent advances in the description of weakly bound and unbound nu-
clear states using either a real ensemble representing (quasi-)bound single-particle
states and non-resonant continuum states (the so-called Shell Model Embedded
in the Continuum) or a complex Berggren ensemble representing bound single-
particle states, decaying resonant states, and non-resonant continuum states (the
so-called Gamow Shell Model). These two di�erent strategies in formulating the
multicon�gurational Continuum Shell Model are illustrated by showing how the
non-resonant continuum impacts the mechanism of nuclear binding.

1. Introduction

The major thoretical challenge in the microscopic description of weakly

bound nuclei is the rigorous treatment of both the many-body correla-
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tions and the continuum of positive-energy states and decay channels. A

fully symmetric description of the interplay between scattering states, res-

onances and bound states in the many-body wave function requires a close

interplay between methods of nuclear structure and nuclear theory. This

mutual cross-fertilization, which cannot be accomplished without overcom-

ing a traditional separation between nuclear structure and nuclear reaction

methods, is a splendid opportunity for opening a new era in the nuclear

theory of loosely bound systems. Many traditional approaches of nuclear

theory, including the standard shell model and the pairing theory, must

be modi�ed to include an explicit coupling between bound states and con-

tinuum. Weakly bound states or resonances cannot be described within

the closed quantum system formalism. For bound states, there appears a

virtual scattering into the continuum phase space involving intermediate

scattering states. Continuum coupling of this kind a�ects also the e�ective

nucleon-nucleon interaction. For unbound states, the continuum structure

appears explicitly in the properties of those states.

The impact of the particle continuum was discussed in the early days

of the multicon�gurational SM in the middle of the last century. However,

thanks to the success of the `standard' SM in terms of interacting nucleons

assumed to be perfectly isolated from an external environment of scattering

states, the continuum-related matters had been swept under the rug. An

example of a problem is the so-called Thomas-Ehrman shift [1] appearing

in, e.g., the mirror nuclei 13C, 13N, which is a salient e�ect of a coupling to

the continuum depending on the position of the respective particle emission

thresholds. The mathematical formulation of the problem of nuclear states

embedded in the continuum of decay channels goes back to Feshbach [2],

who introduced the two subspaces containing the discrete (Q subspace) and

scattering (P subspace) states. Feshbach succeeded in formulating a uni�ed

description of nuclear reactions for both direct processes in the short-time

scale and compound nucleus processes in the long-time scale. A uni�ed

description of nuclear structure and nuclear reaction aspects is much more

complicated and became possible in realistic situations only at the end of

the last century (see Ref. [3] for a recent review).

In the recently developed Shell Model Embedded in the Continuum

(SMEC), all coupling matrix elements between di�erent discrete states,

di�erent scattering states, as well as between discrete and scattering states,

are calculated using the realistic e�ective SM interaction. The many-body

system is described by an e�ective non-hermitian Hamiltonian H that co-

sists of two terms: (i) the Hamiltonian matrix of the closed system with
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discrete eigenstates, and (ii) the coupling matrix between the system and

its environmenta. The eigenvalues of H are complex and correspond to the

poles of the scattering (S) matrix.

Di�erent continuum shell model approaches, including SMEC, are based

on the completeness of an one-particle basis consisting of bound orbits and

a real continuum. After removing the scattering tails, the single-particle

(s.p.) resonances are included in Q whereas their tails are fully incorpo-

rated in P [5]. Hence, in corresponding con�guration-mixing calculations,

the resonances resemble bound orbits. On the other hand, in certain situ-

ations (e.g., 0p3=2, 0p1=2 s.p. orbits outside of the 4He core, or the 0d3=2
orbit outside of the 16O core) one wants to use broad resonances as physical

building blocks in the con�guration-mixing calculations. Here, the original

two-subspace approach of Feshbach is not very useful and another strategy

is needed. Recently, the multicon�gurational SM in the complete Berggren

basis, the so-called Gamow Shell Model (GSM), has been formulated [6].

The s.p. basis of GSM is given by the Berggren ensemble [7] which contains

Gamow states (or resonant statesb) and the (complex) non-resonant contin-

uum. One may see here a two-subspace concept of Feshbach reappearing,

with the subspace QB consisting of the Gamow states in the complex energy

plane, and the subspace PB containing the non-resonant continuum. In the

GSM framework, the number of particles in the scattering continuum is not

predetermined, but it results from a variational calculation in the Hilbert

space spanned by all Slater determinants in QB and PB subspaces. Hence,

GSM can also be applied to Borromean systems for which A- and (A� 2)-

nucleon systems are particle-stable but the intermediate (A � 1)-system is

not. GSM is a natural generalization of the SM concept for the open quan-

tum systems. And, as such, it is a tool par excellence for nuclear structure

studies. A description of many-body wave functions at large distances, as

needed in nuclear reaction studies, even though feasible within the GSM

formalism, may be rather cumbersome. For that purpose, the coupled-

channel method used in SMEC to describe the asymptotic channels is far

more accurate.

aIn SMEC, the description of the environment is simpli�ed and includes one-nucleon
decay channels only. A more complete description is technically cumbersome, though it
has been developed for the purpose of two-proton decay studies [4].
bThe resonant states are the generalized eigenstates of the time-independent Schr�odinger
equationwhich are regular at the origin and satisfy purely outgoing boundary conditions.
They correspond to the poles of the S matrix in the complex energy plane lying on or
below the positive real axis.
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2. SMEC and Binding Energy Systematics in Oxygen and

Fluorine Isotopes

As one approaches the particle drip lines, the amount of spectroscopic in-

formation concerning bound states becomes very scarce. Hence, to extract

nuclear structure data, one relies on the analysis of decaying states and

reaction dynamics. For that purpose, SMEC - which gives a uni�ed de-

scription of the energy spectra, including nucleon emission widths and elec-

tromagnetic transition probabilities, as well as the reactions involving one

nucleon in the continuum [8] - provides an adequate theoretical framework.

Below, we shall discuss the generic features of the coupling to the particle

continuum on the example of binding energy systematics.

The detailed description of the SMEC formalism has been given else-

where [8,3]. Localized many-body states in Q are obtained by solving the

standard SM problem for the Hamiltonian HQQ. P contains asymptotic

channels made of (A � 1)-particle localized states and one nucleon in the

scattering state. The residual coupling HPQ between states in Q and P

is given by the zero-range interaction V12 = �V (12)
0 [� + �P �

12]�(r1 � r2),

where � + � = 1 and P �
12 is the spin exchange operator. An e�ective SM

Hamiltonian including the coupling to the continuum is energy-dependent:

H(E) = HQQ +HQPG
(+)
P (E)HPQ ; (1)

where G
(+)
P (E) is a Green function for the motion of a single nucleon in

the P subspace. The energy scale is settled by the one-nucleon emission

threshold E(thr) [3]. For E > E(thr), H is a complex-symmetric matrix,

while it is hermitian for E < E(thr). In the present studies, we use the full

sd valence space for N < 20 and the full pf space for N > 20. For HQQ, we

take the USD interaction in the sd shell [9] and the KB
0

interaction in the

pf shell [10]. The cross-shell interaction is given by the G-matrix [11]. The

ground state (g.s.) continuum coupling correction to the binding energy is

calculated in SMEC as [12] :

Ecorr = h�g:s:jH �HQQj�g:s:i: (2)

The g.s. wave function in the parent nucleus (N;Z) is coupled to di�erent

channel wave functions, which are determined by the motion of an unbound

neutron relative to the daughter nucleus (N � 1; Z) in a certain SM state

�
(N�1)
i . All asymptotic channels composed of SM states are included in

our calculations.

Figure 1 shows the neutron number dependence of Ecorr in oxygen iso-

topes for (i) E
(thr)
n of SMEC (solid line), and for (ii) E

(thr)
n �xed arbi-
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Figure 1. Neutron number dependenceof the SMEC energy correction (2) to the SM g.s.

energy. The solid line is obtained for one-neutron emission threshold E
(thr)
n calculated

in SMEC for each nucleus. The dotted line with squares and triangles is obtained for

E
(thr)
n

which is �xed arbitrarily at 0 and 4 MeV, respectively (from Ref. [12]).

trarily at 0 or 4 MeV c. The N -dependence of Ecorr exhibits approximately

quadratic behavior with the number of valence neutrons; this is characteris-

tic of a monopole Hamiltonian. Deviations from this dependence re
ect the

continuum coupling. For E(thr)
n = 0 (a one-neutron drip-line limit), there

appears an odd-even staggering (OES) around an average N -dependence.

A blocking of the virtual scattering to the particle continuum by an odd nu-

cleon diminishes the continuum correction to the binding energy of odd-N

nuclei. This \drip-line e�ect" is restricted to a narrow range of excitation

energies around E
(thr)
n = 0 and vanishes for E

(thr)
n = 4 MeV. For the values

of E
(thr)
n calculated in SMEC, one �nds an inverted OES with enhanced

Ecorr for odd-N isotopes. This is because E(thr)
n in an odd-N nucleus is

smaller than in the even-N neighbors. This continuum coupling e�ect leads

to an attenuation of OES of one-neutron separation energies Sn in nuclei

close to the neutron dripline [12].

Figure 2 shows the neutron number dependence of Ecorr for 
uorine

cIn our model space for the oxygens, the continuum coupling contains the neutron-

neutron (T = 1) part only. The strength V
(nn)
0 = 414 MeV�fm3 yields a good overall

agreement with the spectra of oxygen isotopes.
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Figure 2. The same as in Fig. 1 except for the 
uorine isotopes.

isotopes. The neutron-proton residual coupling strength has been taken as

V
(np)
0 = (1=2)V (nn)

0 . (In 
uorine isotopes, both neutron-neutron (T = 1)

and neutron-proton (T = 0; 1) couplings between states in Q and P are

present. The nn-coupling has been adjusted to the oxygen isotope chain.)

The value of Ecorr depends both on jNp � Nnj and (Np + Nn) (cf. Figs. 1

and 2), where Np and Nn is the number of valence protons and neutrons,

respectively. The three cases displayed in Fig. 2 can be directly compared

with those of Fig. 1. For E(thr)
n = 4 MeV, one can see the OES which

is absent in the oxygen chain. This is an e�ect of the np-coupling. Ecorr

in odd-odd isotopes is increased as compared to the neighboring odd-even

ones. The size of Ecorr in this case depends weakly on E
(thr)
n . Qualitatively,

a similar e�ect can also be seen at the neutron drip line (E
(thr)
n = 0 in

Fig. 2), but the OES due to the np-coupling is now attenuated by the nn-

coupling (cf. Fig. 1) which gives rise to the opposite OES. For the values of

E
(thr)
n calculated in SMEC, the OES is enhanced due to the combined e�ects

of the np-continuum coupling (which weakly depends on E
(thr)
n ) and the nn-

continuum coupling (which closely follows the OES of E
(thr)
n ). These two

e�ects act `in phase', enhancing the binding of odd-N nuclei and strongly

attenuating the OES of Sn.
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2.1. Threshold dependence of the continuum energy

correction

In this section, we shall analyze the generic features of the SMEC energy

correction to an SM eigenstate. If one neglects external and channel-channel

couplings, then the continuum correction to the (closed system) eigenenergy

Ei has the form [3]:

E(i)
corr =

X
c

Z
1

0

dr !i
c (+)(r) �wi(r) ; (3)

where !ic (+)(r) is the solution of the inhomogeneous radial equation:

(E �Hcc)!i
c (+)(r) = wi(r) : (4)

Boundary conditions for !ic (+)(r) require that it is regular at r = 0 and has

only outgoing waves in all open channels, or it is exponentially decreasing

in closed ones. In the case of one channel only, Eq. (4) has the following

form : �
E +

�
d2

d r2
� l (l + 1)

r2

�
� V (r)

�
!l

(+)(r) = w(r) : (5)

(h2=2m � 1, everywhere.) For simplicity, we assume a square well potential

de�ned as V (r) = �jV0j for r < R and V (r) = 0 otherwise. Similarly, we

take the source of the simplest linear form inside the well: w(r) = w0 r,

and vanishing outside. In this case, E
(i)
corr, Eq. (3), has the upper bound at

r = R:

E(l)
corr =

Z R

0

dr !l
(+)(r) �w0 r : (6)

The general solution !l(+)(r) for r < R can be written as :

!l
(+)(r) = Ar jl(K r) +

w0

K2
r ; (7)

where K =
p
E + jV0j. The normalization constant A � A(E) can be found

by matching the above solution with the outside wave function, which, in

this case, is proportional to a spherical Hankel function:

!l
(+)(r) = B r hl

(+)(k r) (r � R) (8)

with k =
p
E. The normalization B does not in
uence the value of the

integral (6). The only source of a singular behavior of E
(l)
corr(E) at E ! 0 is

the function A(E), because both jl(K r) and 1=K2 are analytic functions

of E. This analysis can be easily generalized to the case of an arbitrary
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l 6= 0. We have found that the (l+1)-th derivative of A(E) is discontinuous

in both real and imaginary parts. The origin of this discontinuity comes

solely from the k ! E transformation (A(k) is analytic at k = 0), and in

the case of the square well potential, the jump in the (l + 1)-derivative is

even in�nited.

The threshold phenomenon discussed in this section is a genuine e�ect of

the continuum coupling for neutrons. Strong irregularities are expected in

even-N systems for all those states lying close to the one-neutron emission

threshold that contain a signi�cant admixture of s- and p-partial waves.

For g.s. con�gurations, this mechanism contributes to the attenuation of

OES of Sn in oxygen and 
uorine isotopes close to the neutron drip line.

3. Gamow Shell-Model Description

There exist several completeness relations involving resonant states which

can be derived from the Mittag-Le�er theory. As said before, in the heart

of GSM is the Berggren completeness relation [7] :

X
n

junih~unj+
Z
L+

jukih~ukjdk = 1; (9)

where juni are the Gamow states (both bound states and the decaying reso-

nant states lying between the real k-axis and the complex contour L+) and

juki are the scattering states on L+. The resonant states are normalized

according to the squared radial wave function and not to the modulus of

the squared radial wave function. This is a consequence of the analytical

continuation which is used to introduce the normalization of Gamow states.

In practical applications, one has to discretize the integral in (9). Such a

discretized Berggren relation is formally analogous to the standard complet-

ness relation in a discrete basis of L2-functions and, in the same way, leads

to the eigenvalue problem Hj	i = Ej	i. However, as the formalism of

Gamow states is non-hermitian, the matrix H is complex symmetric. The

discretized Berggren basis can be a starting point for establishing the com-

pleteness relation in the many-body case in full analogy with the standard

SM in a complete (discrete) basis of L2-functions. One obtains :X
n

j	nih ~	nj ' 1; (10)

dFor di�used potentials, the jump is �nite and it vanishes if the Coulomb potential is
present, i.e., for protons.
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where j	ni � j�1 � � ��N i are the N -body Slater determinants, and j�mi
are the resonant (bound and decaying) and scattering (contour) s.p. states.

The approximate equality in Eq. (10) is a consequence of the continuum

discretization. As in the case of s.p. Gamow states, the normalization of

Gamow-Slater determinants is given by the squares of SM amplitudes :X
n

c2n = 1 (11)

and not by the squares of their absolute values.

3.1. GSM Study of Helium Isotopes

A description of neutron-rich helium isotopes, including Borromean nuclei
6;8He, is a challenging theoretical problem. The nucleus 4He is a well-bound

system with the one-neutron emission threshold at 20.58 MeV. On the con-

trary, the nucleus 5He is a broad resonance. The nucleus 6He, which con-

sists of two neutrons outside 4He, is bound with the two-neutron emission

threshold at 1.87 MeV. The �rst excited 2+1 state in 6He at 1.8 MeV is neu-

tron unstable with a width � = 113 keV. In our GSM calculations, the s.p.
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Figure 3. Experimental (EXP) and calculated (GSM) binding energies of 6�9He as well
as energies of J� = 2+ states in 6He and 8He. The resonance widths are indicated by
shading. The energies are given with respect to the core of 4He.
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con�guration space includes both resonances 0p3=2, 0p1=2 and the two asso-

ciated complex continua p3=2 and p1=2 which are discretized with 5 points

each. Figure 3 shows the lowest energy states of helium isotopes calculated

with the surface delta interaction with the strength VSDI = 1670 MeV�fm3.

The 0p3=2, 0p1=2 s.p. resonances are generated by a Woods-Saxon potential

with the parameters chosen to reproduce experimental energies and widths

of the 3=2�1 and 1=2�1 resonances of 5He.

It is found that the non-resonant continuum contributions are always

essential and, in some cases (e.g., 8;9He), they dominate the structure of

the g.s. wave function. Moreover, the wave function components having

many neutrons in the non-resonant continuum give an essential contribution

to the binding energy. Without the non-resonant (contour) states, the

predicted g.s. energy of 8He is +2:08 MeV. The inclusion of scattering

states lowers the binding energy to �1:6 MeV (sic!). GSM calculations

reproduce the most important feature of 6;8He: the ground state is particle

bound, despite the fact that all the basis states lie in the continuum.

The odd-N isotopes of 7;9He are calculated to be wide neutron reso-

nances. The neutron separation energy anomaly, i.e., the increase of one-

neutron separation energy when going from 6He to 8He, is reproduced. This

anomaly is explained in GSM by a large contribution from non-resonant

continuum states. This generic mechanism, expected to be present in

loosely bound systems, may give rise to the formation of multineutron Bor-

romean systems, changing the drip line into a porous drip zone.
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