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Abstract

In this paper, the 3-dimensional (3D) position and orienta-
tion of a camera held by the end-effector of a robot manipula-
tor is regulated to a constant desired position and orientation
despite (i) the lack of depth information of the actual or de-
sired camera position from a target, (ii) the lack of a geomet-
ric model of the target object, and (iii) uncertainty regarding
both the angle and axis of rotation of the camera with respect
to the robot end-effector (i.e., the orientation extrinsic cam-
era parameters). By fusing 2D image-space and projected 3D
task-space information (i.e., 2.5D visual servoing), a robust
controller is developed that ensures exponential regulation of
the position and orientation of the camera. The stability of
the controller is proven through a Lyapunov-based analysis.

1 Introduction
Motivated by the significant impact that may be realized by
enabling robotic systems with the ability to perform tasks
based on a sense of perception, a myriad of research has
been directed at vision related issues. Some key issues that
have limited the robustness of vision-based robotic control are
camera calibration and the fact that the image space is a 2-
dimensional (2D) projection of the 3D task-space. Specifically,
based on the fact that the camera output is in the image-space
and the robot control is computed in terms of the task-space
(joint space), an optic model is often employed to relate image-
space data to the task-space. To relate the image-space to the
task-space, both intrinsic and extrinsic parameters1 of the op-
tic model are required. Motivated by the desire to incorporate
robustness to these parameters, several adaptive and robust
controllers have been designed (e.g., see [7, 11, 18]). Unfortu-
nately, much of the previous work either constrains the visual
servoing problem to a planar case so that the effects of the
unknown depth information can be held constant or assumes
that the depth can be measured via an additional sensor (e.g.,
ultrasonic sensors, laser-based sensors, additional cameras) or
estimated from multiple cameras.
∗This research was supported in part U.S. DOE Office of Biolog-

ical and Environmental Research (OBER), Environmental Manage-
ment Sciences Program (EMSP) project ID No. 82797 at ORNL, a
subcontract to ORNL by the Florida Department of Citrus through
the University of Florida, and by U.S. NSF Grant DMI-9457967,
ONR Grant N00014-99-1-0589, a DOC Grant, and an ARO Auto-
motive Center Grant.

1The camera calibration parameters are composed of the so-
called intrinsic parameters (i.e., image center, camera scale factors,
and camera magnification factor) and extrinsic parameters (i.e.,
camera position and orientation).

Researchers have also been motivated by the desire to com-
pensate for the lack of depth information from the 2D image
data (without requiring additional cameras or additional sen-
sors). To this end, several researchers have recently developed
partitioned approaches that exploit a combination of 3D task-
space information and 2D image-space information. For ex-
ample, in the series of papers by Malis and Chaumette (e.g.,
[1, 2, 14, 15]) various kinematic control strategies (coined 2.5D
visual servo controllers) exploit the fact that the interaction
between translation and rotation components can be decou-
pled through a homography. Specifically, information from
the task-space (obtained through a projective Euclidean re-
construction from the image data) is utilized to regulate the
rotation error system, while information from the 2D image-
space is utilized to control the translation error system. In [6],
Deguchi utilizes a homography relationship and an epipolar
condition to decouple the rotation and translation components
and then illustrates how two types of visual controllers can
be developed from the decoupled information. More recently,
Corke and Hutchinson [5] also developed a hybrid image-based
visual servoing scheme that decouples rotation and translation
components about the z-axis from the remaining degrees of
freedom. One drawback of some of the previous controllers
is the claim that a constant estimate of the aforementioned
depth information can be utilized in lieu of the exact value
(although, no stability analysis is provided to support this
claim). That is, as stated in [15], an off-line learning stage is
required to estimate the distance of the desired camera posi-
tion to the reference plane. Motivated by the desire to actively
compensate for the aforementioned depth information, [3] de-
veloped an adaptive kinematic controller to ensure uniformly
ultimately bounded (UUB) set-point regulation of the image
space errors while compensating for the unknown depth infor-
mation, provided conditions on the translational velocity and
the bounds on uncertain depth parameters are satisfied. In
[4], Conticelli et al. proposed a 3D depth estimation proce-
dure that exploits a prediction error provided a positive def-
inite condition on the interaction matrix is satisfied. In [17],
Taylor et al. developed a kinematic controller that utilizes a
constant, best-guess estimate of the calibration parameters to
achieve local set-point regulation; although, several conditions
on the rotation and calibration matrix are required. In [8],
Fang et al. recently developed a 2.5D visual servo controller
to asymptotically regulate a manipulator end-effector by ex-
ploiting Lyapunov-based techniques to develop an adaptive
update law that compensated for an unknown depth parame-
ter. Built on the results of [8], Fang et al. in [9] designed a
homography-based visual servo controller that asymptotically
regulates the position of a wheeled mobile robot despite non-

1



holonomic constraints and parametric uncertainty in the depth
parameter. Although the results in [8] and [9] were achieved
despite unknown depth information, the intrinsic and extrinsic
camera parameters were required to be known; hence, motiva-
tion exists to develop controllers that can compensate for the
intrinsic and extrinsic camera parameters. Recently in [13],
Malis and Chaumette proposed a 2.5D visual servo controller
to address the unknown calibration parameters. Specifically,
the approach in [13] is to use a constant, “best-guess” estimate
of the intrinsic and extrinsic calibration parameters and then
discuss the resulting stability of the controller.
In this paper, feature points extracted from images taken

from the desired and current camera position and orientation
are related through a homography, so that the 3D position
and orientation of a single camera held by the end-effector of
a robot manipulator are exponentially regulated to the con-
stant, desired position and orientation. The result is facili-
tated by decomposing the homography into translation and
rotation components and then combining 2D image-space and
projected 3D task-space information (i.e., 2.5D visual servo-
ing). As described in [15], the advantages of the 2.5D visual
servoing strategy are that a 3D model of the target is not re-
quired and the target remains in the camera’s field-of-view.
The exponential regulation result is achieved despite (i) the
lack of depth information of the actual or desired camera po-
sition from a target, (ii) the lack of a geometric model of the
target object, and (iii) parametric uncertainty regarding both
the angle and axis of rotation of the camera with respect to
the robot end-effector. That is, in contrast to the asymptotic
results given in [8] and [9] that require calibration of the in-
trinsic and extrinsic camera parameters, the stability result
in this paper is robust to the extrinsic calibration parame-
ters related to the orientation of the camera with respect to
the robot end-effector. In contrast to the strategy provided in
[13], the controller in this paper compensates for the unknown
extrinsic parameters through nonlinear feedback rather than
by using a “best-guess” estimate; however, this paper assumes
that the intrinsic camera parameters are exactly known.

2 Model Development

2.1 Camera Model

Consider two orthogonal coordinate systems, denoted by F
and F∗, where F is attached to a camera that is held by the
robot end-effector, and F∗ is a fixed coordinate system that
represents the constant, desired position and orientation of
F . Also consider a reference plane π that is defined by four2
target points Oi ∀i = 1, 2, 3, 4. The actual and desired 3D
coordinates of Oi expressed in terms of F and F∗ are denoted
by xi (t) , yi (t) , zi (t) ∈ R and x∗i , y∗i , z∗i ∈ R, respectively, and
are defined as elements of m̄i (t), m̄∗i ∈ R3 as follows

m̄i =
£
xi yi zi

¤T
(1)

m̄∗i =
£
x∗i y∗i z∗i

¤T
. (2)

2 In general, only 3 points are required to define a plane, however,
in the subsequent analysis, 4 target points located on the plane π
are required. If the points are not coplanar [15], then at least 8
pairs of points are required to estimate the homography (e.g., using
the algorithm presented in [14]).

The task-space coordinates given in (1) and (2) can be ex-
pressed as normalized coordinates, denoted by mi (t), m∗i ∈
R3, as follows

mi =
m̄i

zi
=
h xi
zi

yi
zi

1
iT

(3)

m∗i =
m̄∗i
z∗i

=

·
x∗i
z∗i

y∗i
z∗i

1

¸T
(4)

where the standard assumption is made that zi (t), z∗i are
positive. The normalized task-space coordinates of each tar-
get point can also be expressed in terms of pixel coordinates,
denoted by ui (t) , vi (t) ∈ R, through the following global in-
vertible transformation

pi = Ami (5)

where pi (t) ∈ R3 is defined as follows

pi =
£
ui vi 1

¤T
(6)

and A ∈ R3×3 is a known, constant, and invertible intrinsic
camera calibration matrix. The desired normalized task-space
coordinates given in (4) can also be expressed in terms of pixel
coordinates, denoted by u∗i , v

∗
i ∈ R, through the following re-

lationship
p∗i = Am

∗
i . (7)

where p∗i ∈ R3 is defined as follows

p∗i =
£
u∗i v∗i 1

¤T
. (8)

Based on the fact that the matrix A is known and invertible,
the relationships given in (5) and (7) can be used to compute
mi (t) and m∗i of (3) and (4), respectively.
Motivated by the desire to further relate the 2D image-

space information to the 3D task-space information, a projec-
tive homography, denoted by G (t) ∈ R3×3, can be utilized to
relate the image points pi (t) of (5) to the image points p∗i of
(7) in the following manner [10]

pi = αiGp
∗
i . (9)

In (9), αi (t) ∈ R denotes an unknown scaling factor defined
as follows

αi =
z∗i
zi

(10)

where zi (t) and z∗i were defined in (1) and (2), respectively.
After utilizing (5), (7), and (9), the relationship given in (9)
can be rewritten in terms of the normalized task-space coor-
dinates as follows

mi = αiHm
∗
i (11)

where H (t) ∈ R3×3 denotes an Euclidean homography that is
defined as follows

H = A−1GA. (12)

By utilizing various techniques (e.g., see [10, 19]), H(t) can
now be decomposed into rotation and translation components
as follows

H = R+ xhn
∗T . (13)

In (13), R (t) ∈ R3×3 denotes the measureable rotation from
the actual task-space coordinates to the desired task-space
coordinates, n∗ ∈ R3 denotes the constant unit normal from
F∗ to π, and xh (t) ∈ R3 denotes the scaled translation vector
from F to F∗. The actual translation from F to F∗ denoted
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by xf (t) ∈ R3 is unmeasurable; however, it can be expressed in
terms of the known scaled translation vector xh (t) as follows
(see Figure 1)

xf = xhd
∗ (14)

where d∗ ∈ R denotes the constant, unknown distance from
F∗ to π along n∗.

π

n *

F

O i

d*

(xf , R)

F*

mi

m*i

π

n *n *

F

O iO i

d*d*

(xf , R)

F*

mimi

m*im*i

Figure 1: Coordinate frame relationships.

Remark 1 To compute the homography introduced in (12),
G (t) must first be computed. After normalizing G (t) with
respect to the g33(t) component, the expression given in (9)
can be written as follows ui

vi
1

 = αi
g33

 g11 g12 g13
g21 g22 g23
g31 g32 1

 u∗i
v∗i
1

 (15)

where gij(t) denote the components of G(t) ∀i, j = 1, 2, 3,
(since (15) is defined up to a scalar, at least one component
of G(t) is nonzero and without loss of generality we assume
that g33(t) 6= 0). Since each pair of target points provide the
3 equations given in (15), 4 coplanar points must be selected
such that 12 linearly independent equations can be generated
from (15) to solve for the 12 unknowns (i.e., 4 unknowns from
αi
g33
∀i = 1, 2, 3, 4 and the 8 unknowns from the normalized

G(t)). From the system of 12 equations and 12 unknowns, the
4 unknowns

αi
g33

∀i = 1, 2, 3, 4 can be factored out leaving 8

equations with 8 unknowns. The set of set of linear equations
used to determine the unknown components of the normalized
G(t) matrix can be written in the following form

Λξ1 = ξ2 (16)

where Λ(ui, vi, u∗i , v
∗
i ) ∈ R8×8 is a known matrix, ξ1 ∈ R8 de-

notes the unknown vector composed of the normalized compo-
nents of G(t), and ξ2(ui, vi) ∈ R8 denotes a measureable vec-
tor. To determine the unknown parameters from (16) there are
two issues that must be addressed. The first issue is ambigu-
ity in the image. Specifically, if the four points are selected so
that the rotation of the image may be ambiguous (e.g., a square
or circle) then some additional image feature must be used to

remove the ambiguity (e.g., color of the image points) or the
solution to (16) will be incorrect. Another issue that must be
taken into consideration is that the points must be selected to
ensure that Λ(ui, vi, u∗i , v

∗
i ) is invertible. From the first rela-

tionship in (9), a set of 12 linear equations given by the 4 tar-
get point pairs (p∗i , pi (t)) with 3 equations per target pair can
be used to determine the projective homography up to a scalar
multiple (i.e., the product αi(t)G(t) can be determined). Var-
ious techniques can then be used (e.g., see [10, 19]) to decom-
pose the Euclidean homography, to obtain αi(t), G(t), H(t),
and the rotation and translation signals R(t), xh(t), and n∗.
Hence, R(t), xh(t), n∗, and the depth ratio αi (t) are all known
signals that can used for control synthesis.

2.2 Control Objective
The control objective of this paper is to regulate the mismatch
between the actual and desired 3D task-space camera position
to zero. Specifically, the control objective is to regulate the
rotation mismatch between F and F∗ (i.e., R (t) given in (13))
to the identity matrix, while regulating the translation mis-
match between F and F∗ to zero. To this end, we define a
rotation error-like signal eω (t) ∈ R3 as follows [15]

eω = uθ (17)

where u (t) ∈ R3 represents a unit rotation axis and θ (t) ∈ R
denotes the rotation about u(t) that is assumed to be confined
to the following region

−π < θ (t) < π. (18)

The parameterization u (t) θ (t) is related to the rotation ma-
trix R (t) by the following expression

R = I3 + sin θ [u]× + 2 sin
2 θ

2
[u]2× (19)

where the notation Ii denotes an i× i identity matrix, and the
notation [ζ]× denotes the following skew-symmetric matrix

[ζ]× ,

 0 −ζ3 ζ2
ζ3 0 −ζ1
−ζ2 ζ1 0

 ∀ζ =
 ζ1

ζ2
ζ3

 . (20)

To quantify the translation mismatch between F and F∗,
we define a translation error signal, denoted by ev (t) ∈ R3, as
follows

ev = me −m∗e (21)

where me (t) ∈ R3 denotes the extended coordinates [15] of an
image point on π in terms of F and is defined as follows3

me =
£
me1 me2 me3

¤T
=
h x1
z1

y1
z1

ln (z1)
iT

(22)

and m∗e ∈ R3 denotes the extended coordinates of the cor-
responding desired image point on π in terms of F∗ and is
defined as follows

m∗e =
£
m∗e1 m∗e2 m∗e3

¤T
=

·
x∗1
z∗1

y∗1
z∗1

ln (z∗1)
¸T
(23)

3Any point Oi on π can be utilized in the subsequent develop-
ment; however, to reduce the notational complexity, we have elected
to select the image point O1, and hence, the subscript 1 is utilized
in lieu of i in the subsequent development.

3



where ln (·) denotes the natural logarithm. The first two ele-
ments of ev(t) can be measured based on the fact that mi (t)
and m∗i can be computed from the image-space by using (5)
and (7). Given (21)-(23), the fact that

ln (z1)− ln (z∗1) = − ln (α1) , (24)

and the fact that α1(t) can be determined through the de-
composition of the Euclidean homography, it is clear that the
third element of ev (t) is also measurable.

Remark 2 To obtain u (t) and θ (t) from a given rotation
matrix R (t), the following expressions can be utilized [16]

cos θ =
1

2
(tr (R)− 1) (25)

[u]× =
R−RT
2 sin(θ)

(26)

where the notation tr(·) denotes the trace of a matrix.

Remark 3 Given the structure of the skew symmetric matrix
given in (20), the following property can be easily proven

ζT [ζ]× =
£
0 0 0

¤ ∀ζ ∈ R3. (27)

3 Error System Development

3.1 Open-Loop Dynamics
After taking the time derivative of (17) and (21) and perform-
ing some mathematical manipulation, the open-loop dynamics
for ev(t) and eω(t) can be expressed in terms of the camera
velocities as follows [8, 15]

ėω = −Lωωc (28)

z∗1 ėv = −α1Lvvc + z∗1L(v,ω)ωc (29)

where vc(t), ωc(t) ∈ R3 represent the linear and angular veloc-
ities of the camera expressed in F , respectively. In (29) and
(28), the measurable matrices Lv(me1,me2), L(v,ω)(me1,me2),
Lω (u, θ) ∈ R3×3 are defined as follows

Lv =

 1 0 −me1

0 1 −me2

0 0 1

 (30)

L(v,ω) =

 me1me2 −1−m2
e1 me2

1 +m2
e2 −me1me2 −me1

−me2 me1 0

 (31)

and

Lω = I3 − θ

2
[u]× +

1− sinc (θ)

sinc2
µ
θ

2

¶
 [u]2× (32)

where

sinc (θ (t)) =
sin θ (t)

θ (t)
. (33)

The open-loop dynamics given in (29) and (28) are expressed
in terms of the linear and angular camera velocities. Since the
camera is mounted on the end-effector of the robot manipu-
lator, a relationship can be developed to relate the linear and
angular camera velocities to the actual kinematic control input
signals given by the linear and angular velocities of the robot

end-effector. This relationship is dependent on the extrinsic
calibration parameters related to the orientation of the camera
with respect to the end-effector. Typically, visual servo control
designs assume that these extrinsic parameters are known. To
enhance the robustness and accuracy of the subsequent con-
trol development, we relax the assumption that these extrinsic
parameters are known. Specifically, the relationship between
the linear and angular velocity of the camera with respect to
the end-effector is given as follows [8]·

vc
ωc

¸
=

·
RToffR

T
0 0

0 RToffR
T
0

¸ ·
ve
ωe

¸
(34)

where Roff ∈ R3×3 denotes an unknown, constant rotation
offset between the camera frame F and the end-effector frame
Fe, R0 (t) ∈ R3×3 represents the measurable, time-varying ro-
tation between the robot frame Fo and the end-effector frame
Fe, and ve(t), ωe(t) ∈ R3 denote the linear velocity and an-
gular velocity of the end-effector expressed in Fe, respectively.
After substituting the relationship given in (34) into (29) and
(28) for vc(t) and ωc(t), the open-loop kinematics can be writ-
ten in terms of the end-effector velocity inputs as follows

z∗1 ėv = −α1LvRToffRT0 ve + z∗1L(v,ω)RToffRT0 ωe (35)

ėω = −LωRToffRT0 ωe. (36)

Remark 4 The matrix 1
2 (Roff + R

T
off ) is positive definite,

and there exist some positive constants λ1 and λ2 that satisfy
the following inequalities (see the Appendix)

λ1 kζk2 ≤ ζT
Ã
Roff +R

T
off

2

!
ζ ≤ λ2 kζk2 ∀ζ ∈ R3. (37)

In the subsequent stability analysis, we will also exploit the
following fact

xTRoffx = x
TRToffx = x

T

Ã
Roff +R

T
off

2

!
x ∀x ∈ R3.

(38)

3.2 Control Development
Given the open-loop error dynamics in (35) and (36), and the
subsequent stability analysis, the end-effector velocity control
signals are designed as follows

ve =
1

α1

µ
kv

f(me1,me2)
R0L

T
v ev +R0vR

¶
(39)

ωe = kωR0eω (40)

where kv, kω ∈ R denotes positive control gains. In (39),
f(me1,me2) ∈ R denotes the following nonnegative function

f(me1,me2) =
1

6
m2
e1 +

1

6
m2
e2 +

1

3
(41)

−1
3

sµ
1

2
m2
e1 +

1

2
m2
e2 + 1

¶2
− 1 ,

and the auxiliary variable vR(t) ∈ R is defined as follows

vR = kn1k
2
wρ

2LTv ev. (42)
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In (42), kn1 ∈ R denotes a positive control gain, and
ρ(|me1| , |me2|) ∈ R denotes a positive bounding function that
must be selected to satisfy the following inequality

ρ(|me1| , |me2|) ≥
°°z∗1L−1v L(v,ω)

°° . (43)

After substituting (39), (40), and (42) into (35) and (36), the
following closed-loop error dynamics are obtained

z∗1 ėv = − kv
f(me1,me2)

LvR
T
offL

T
v ev (44)

−kn1k2wρ2LvRToffLTv ev
+kωLv

³
z∗1L

−1
v L(v,ω)R

T
offeω

´
ėω = −kωLωRToffeω . (45)

Remark 5 Motivation for the structure of f(me1,me2) of
(41) is due to the fact that the the following relationship can
be determined (proof available upon request)

xT
³
LvL

T
v

´
x ≥ f(me1,me2) kxk2 ∀x ∈ R3. (46)

The structure of (41) is also motivated by the fact that
if me1(t),me2(t) ∈ L∞, then f(me1,me2) ∈ L∞ and
f(me1,me2) can be lower bounded by a positive constant c1 ∈ R
as follows (proof available upon request)

f(me1,me2) > c1. (47)

4 Stability Analysis
Theorem 1 The control input given in (39), (42), and (40)
ensures that all signals are bounded during closed-loop opera-
tion and that the translation and rotation error signals, ev (t)
and eω (t), defined in (21) and (17), respectively, are exponen-
tially regulated in the sense that

kev (t)k , keω (t)k ≤
r

λ4
λ3
kz(0)k2 exp (−λ0t) (48)

provided the control gain kn1 introduced in (42) is selected to
satisfy the following constraint

kn1 >
1

λ21kω
(49)

where the vector z(t) ∈ R 6 is defined as follows

z =
£
eTω eTv

¤T
(50)

and the positive constants λ3, λ4 and λ0 ∈ R are defined as
follows

λ3 = min

½
1

2
,
z∗1
2

¾
λ4 = max

½
1

2
,
z∗1
2

¾
(51)

λ0 =
1

λ4
min

½µ
λ1kω − 1

λ1kn1

¶
,λ1kv

¾
. (52)

Proof : To prove Theorem 1, we define a non-negative func-
tion denoted by V (t) ∈ R as follows

V =
1

2
eTωeω +

1

2
z∗1e

T
v ev (53)

where V (t) can be lower and upper bounded as follows

λ3 kzk2 ≤ V ≤ λ4 kzk2 (54)

where z(t) was defined in (50), and the positive constants λ3
and λ4 were defined in (51). After taking the time derivative of
(53) and then utilizing (44) and (45), the following expression
can be obtained

V̇ = − kv
f(me1,me2)

³
LTv ev

´T
RToffL

T
v ev (55)

−kn1k2ωρ2
³
LTv ev

´T
RToffL

T
v ev

+kωe
T
v Lv

¡
z∗1L

−1
v L(v,ω)

¢
RToffew − kωeTωLωRToffew.

Given (27) and the definition of eω(t) in (17), it is straightfor-
ward to prove that

eTωLω = e
T
ω . (56)

By utilizing (37), (38), (43), and (56), we can rewrite (55) as
follows

V̇ ≤ −λ1kω keωk2 − λ1
kv

f(me1,me2)

°°°LTv ev°°°2 (57)

+

·
kωρ

°°°LTv ev°°° keωk− λ1kn1k
2
ωρ

2
°°°LTv ev°°°2¸

where the fact that °°°RToffeω°°° = keωk (58)

has been utilized. By applying the nonlinear damping argu-
ment [12] to the bracketed term in (57) and utilizing (46), the
following expression can be obtained

V̇ ≤ −
µ
λ1kω − 1

λ1kn1

¶
keωk2 − λ1kv kevk2 . (59)

After utilizing (49), (50), (52), and (54), the expression in (59)
can be upper bounded as follows

V̇ ≤ −λ0V. (60)

The differential inequality of (60) can now be solved to yield
the following expression

V (t) ≤ V (0) exp (−λ0t) . (61)

By utilizing (54), the following upper bound for z(t) can be
developed from (61)

kz(t)k ≤
q

λ4
λ3
kz(0)k2 exp (−λ0t). (62)

Based on (50), it is straightforward that ev(t), eω(t) are
bounded by the exponential envelope given in (48). Standard
signal chasing arguments can now be applied to conclude that
all of the signals in the closed-loop system remain bounded.
¥

5 Conclusions
In this paper, Lyapunov-based design and analysis techniques
are utilized to develop a robust visual servoing controller that
ensures exponential regulation of the camera translation and
rotation errors. The result is obtained using a single camera,
despite uncertainty associated with the both the angle and
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the axis of rotation of the camera with respect to the robot
end-effector and unmeasurable depth information. To facili-
tate the result, a Euclidean homography is decomposed into
separate translation and rotation components. By decompos-
ing the homography in this manner, both 2D image-space and
projected 3D task-space (i.e., 2.5D visual servoing) informa-
tion are exploited to construct the controller. Based on the
results given in our previous work (see [8]), the result in this
paper can easily be extended to incorporate the robot dynam-
ics via integrator backstepping. Future efforts will also target
experimental verification of the control strategy.
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Appendix

The constant rotation matrix Roff can be written as a func-
tion of a rotation angle θ0 and rotation axis u0 as follows

Roff = I3 + sin (θ0) [u0]× + 2 sin
2

µ
θ0
2

¶
[u0]

2
× (63)

where we assume that

|θ0| < π

2
. (64)

After utilizing the fact that

RToff = I3 − sin (θ0) [u0]× + 2 sin2
µ
θ0
2

¶
[u0]

2
× (65)

and the following property [8]

[u0]
2
× = u0u

T
0 − I3, (66)

the following expression can be obtained

Roff +R
T
off

2
=

·
1− 2 sin2

µ
θ0
2

¶¸
I3 + 2 sin

2

µ
θ0
2

¶
u0u

T
0 .

(67)
Given the following property

xT
³
u0u

T
0

´
x =

³
uT0 x

´2
≥ 0 ∀x ∈ R3, (68)

the matrix u0uT0 is positive semi-definite. Based on this fact,
we can utilize (64) to prove that the expression given in (67)
is positive definite. Hence, the inequality given in (37) follows
directly.
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