Factorization of low-lying shell-model states
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Shell-model ground-states may accurately be approximated by products of proton and neutron
states. The optimal factors are determined by a variational principle and result from the solution

of rather low-dimensional eigenvalue problems.

Computations of the ground-state and low-lying

excitations in 28Si show that the method converges exponentially quickly as the number of retained

factors is increased.

PACS numbers: 21.60.Cs,21.10.Dr,27.30.+t,27.40.4z

Realistic nuclear structure problems are difficult to
solve due to the complexity of the nucleon-nucleon inter-
action and the sheer sizes of the model spaces. In recent
years, several approximations have been developed that
truncate the model space while obtaining highly accu-
rate approximations to low-lying states. Most truncation
schemes are based on physical insights [1-3] or random
searches in huge Hilbert spaces [4] but do not yield the
optimal approximation. Exceptions are the density ma-
trix renormalization group (DMRG) [5-8] and the factor-
ization method [9] which yield optimal truncations. We
describe the latter method in this talk.

Let us make the following ansatz for the shell-model
ground-state
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This expansion is a factorization of the ground-state in
terms of ) proton states |p;) and  neutron states |n;).
While this expansion is not unique, one can always obtain
orthogonal factors (p;|p;) = 0 = (n;|n;) for i # j, and
order them such that the norms

s} = (pjlpj)(njlny) (2)
decrease with increasing index j. Normalization of the
ground-state implies Z —,5; = 1. Note that the fac-
torization (1) allows us to include the proton-proton
and neutron-neutron correlations into the shell-model
ground-state. The proton-neutron correlations are sub-
sequently built in by increasing the number of retained
factors €). Let dp and dy be the dimensions of the
proton space and the neutron space, respectively. For
Q = min (dp,dy), the ansatz (1) may yield the exact
ground-state while smaller values of €2 result in an ap-
proximation.

We want to determine those proton states |p;) and
neutron states |n;) that yield an optimal approximation
to the true shell-model ground-state. To this purpose
we vary the energy E = (Y|H|Y)/(¢|y) and find (5 =
1,...,Q)
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The optimal states are thus the solution of a nonlinear
and coupled set of eigenvalue equations. Note however,
that for fixed neutron (proton) states the first (second)
set of these equations is a generalized eigenvalue problem
for the protons (neutrons).

We have to explain the operators (n;|H|n;) that enter
Eq. (3). The shell-model Hamiltonian can be written as

H=Hy+ Hp + Vpy, (4)

where the neutron Hamiltonian H N, the proton Hamil-
tonian H p, and the proton-neutron interaction VpN are
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Here, we use indices p,q and m,n to refer to proton and
neutron orbitals, respectively. The antisymmetric two-
body matrix elements are denoted as v;;x;. Thus,
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+ (nilHy|ng) + (niln;) Hp (6)
is an operator acting on the proton states. Note that
the proton-neutron interaction becomes an effective one-
body operator for the protons while the neutron Hamil-
tonian reduces to a constant. The structure of the re-
maining operators in Eq. (3) is similar and requires no
further explanation.

We solve Eq. (3) as follows. We choose a random set
of neutron states |n;) as input and solve the first set
of Eq. (3) for the protons. This requires us to solve a
generalized eigenvalue problem of dimension Qdp. We
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FIG. 1: Low-energy spectrum of the sd-shell nucleus 2®Si
(USD interaction) versus the dimension of the eigenvalue
problem. The dashed lines are the exact results and require
the solution of a 93710 dimensional eigenvalue problem.

are only interested in the solution with lowest energy E
since we are seeking an approximation for the shell-model
ground-state. The resulting proton states |n;) are input
to the second set in Eq. (3). New neutron states are ob-
tained from the lowest energy solution of the second set of
Eq. (3). This generalized eigenvalue problem has dimen-
sion Qdy. We iterate this procedure until the energy F is
converged sufficiently well, usually 5-20 times. The num-
ber of required iterations decreases with the increasing
number of retained factors {2. Note that one can maintain
orthogonality between the proton states and between the
neutron states during this iteration. This has the advan-
tage that one has to solve standard eigenvalue problems
instead of generalized eigenvalue problems. Details can
be found in Ref. [9]. Note also that it is straightforward
to include symmetries into the formalism. Our compu-
tations below are done in m-scheme and keep orthogonal
sets of proton states and neutron states.

As an example, we consider the sd-shell nucleus 28Si
with the USD interaction [10]. The exact ground-state
results from a diagonalization of an eigenvalue problem
with m-scheme dimension dp.x = 93710. We use the
ansatz (1) to compute approximations of the ground-
state and of low-lying excitations. We increase the num-
ber of retained factors up to © = min (dp,dy) which
yields the exact ground-state. The resulting eigenvalue
problems (3) have a dimension d(Q2). Figure 1 shows
the low-lying energy spectrum versus the dimension d(2)
of the eigenvalue problem. The energies converge expo-
nentially quickly as the number of retained factors is in-
creased. The ground-state energy, for instance, deviates
only 100 keV from the exact result at d(Q) = 0.2dmax-
The level spacings are accurately reproduced already for
relatively small dimensions d(f2). To better understand
the exponential convergence, we set = min (dp,dy),
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FIG. 2: Norms s? of the factors for the exact ground-state

of 28Si. The proton and neutron space have equal dimension
dp = dn = 924.

ie. d(2) = dmax, and perform a factorization of the ex-
act shell-model ground-state. The resulting norms (2)
are plotted in Fig. 2. The norms decay exponentially
quickly (degeneracies are due to spin and isospin symme-
try), and this decay causes the exponential convergence
of the factorization method. A similar behavior is found
in DMRG calculations [5-7] of spin chains and pairing-
plus-quadrupole Hamiltonians. While the origin of this
exponential decay is not fully understood, it seems to be
present in many systems of physical interest. The fac-
torization method has successfully been applied to other
sd-shell and pf-shell nuclei [9].

Let us also compare the factorization method pre-
sented in this work with the DMRG. Both methods rely
on the exponential decay of the norms (2). While the
DMRG is potentially able to treat huge Hilbert spaces,
the factorization method can at best reduce the dimen-
sion of the eigenvalue problem by a square root from
dp X dy to max(dp,dy). However, when applied to
the sd-shell nucleus 2*Mg, the m-scheme factorization
method converges much more quickly than the DMRG
8, 9].

Let us finally speculate about an extension of the
factorization method.  We have seen that a large-
dimensional eigenvalue problem can approximately be
solved by a factorization. The optimal factors them-
selves are solutions of lower-dimensional eigenvalue prob-
lems. One might thus speculate whether a recursive ap-
plication of this method is possible, i.e. whether the
lower-dimensional eigenvalue problems again might be
solved approximately by a factorization. This might
then lead to even lower-dimensional eigenvalue problems
which might be solved with standard methods.

In summary, we have applied the factorization method
to the sd-shell nucleus 22Si. The method yields approx-
imations for the ground-state and low-lying excitations



that converge exponentially quickly as the number of re-
tained factors is increased.
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