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The mean–field methods are very successful in describing and predicting prop-
erties of nuclei across the cart of the nuclides. Results from recent large–scale
Hartree-Fock-Bogoliubov calculations in configuration-space are presented for all
even-even nuclei ranging from proton drip line to neutron drip line, with proton
numbers Z = 4, 6, 8, ..., 108 using Skyrme forces and contact delta pairing interac-
tion. Predictions of properties of exotic nuclei close to the particle drip lines are
discussed.

1. Introduction

The development of experimental facilities that accelerate radioactive ion
beams and the new detector technology that is accompanying them1,2,3,4

has opened up a possibility to study the properties of nuclei very far from
the valley of beta stability, all the way out to the particle drip lines.

A proper theoretical description of such weakly bound systems requires
a careful treatment of the asymptotic part of the nucleonic density. An
appropriate framework for is the Hartree-Fock-Bogoliubov (HFB) in the
coordinate representation5,6,7. This method has been used extensively in
the treatment of spherical systems but, is much more difficult to implement
for systems with deformed equilibrium shapes8,9.

In the absence of reliable coordinate-space solutions to the deformed
HFB equations, it is useful to consider instead the configuration-space ap-
proach, whereby the HFB solution is expanded in a single-particle basis.
There have been many configuration-space HFB calculations performed in
a harmonic oscillator (HO) basis, either employing Skyrme forces or the
Gogny effective interaction10,11,12,13, or using a relativistic Lagrangian14.
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For nuclei at the drip lines, however, the HFB+HO expansion converges
slowly as a function of the number of oscillator shells7, producing wave
functions that decrease too steeply at large distances.

An alternative approach that has recently been proposed is to expand
the quasiparticle HFB wave functions in a complete set of transformed har-
monic oscillator (THO) basis states15,16,17, obtained by applying a local-
scaling coordinate transformation (LST)19,20 to the standard HO basis.
Applications of this HFB+THO methodology have been reported both in
the non-relativistic15 and relativistic domains17. In all of these calcula-
tions, specific global parameterizations were employed for the scalar LST
function that defines the THO basis. There are several limitations in such
an approach, however. For example, the minimization procedure that is
needed in such an approach to optimally define the basis parameters is
computationally very time consuming, making it very difficult to apply the
method systematically to nuclei across the periodic table.

Recently, a new prescription for choosing the THO basis has been
proposed18. For a given nucleus, the new prescription requires as input
the results from a relatively simple HFB+HO calculation, with no varia-
tional optimization. The resulting THO basis leads to HFB+THO results
that almost exactly reproduce the coordinate-space HFB results for spheri-
cal nuclei6 and they are of comparable quality to available results for axially
deformed nuclei8.

Because the new prescription requires no variational optimization of the
LST function, it can be applied in systematic studies of nuclear properties.
In the present study, we report the results of HFB+THO calculations per-
formed for all particle-bound even-even nuclei with Z ≤ 108 and N ≤ 188.
The mass charts have been calculated with and without the Lipkin-Nogami
prescription for an approximate particle number projection, followed by an
exact particle number projection after the variation.

The structure of the paper is as follows. In Sec. 2, we briefly review the
HFB theory. In Sec. 3, we introduce the THO basis and then, in Sec. 4,
formulate the prescription for the LST function. The results of systematic
calculations are illustrated in Sec. 5. Conclusions are presented in Sec. 6.

2. Hartree-Fock-Bogoliubov Theory

HFB is a variational theory that treats in a unified fashion mean–field and
pairing correlations21. The HFB equations can be written in a matrix form
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as (
h− λ ∆
−∆∗ −h∗ + λ

) (
Un

Vn

)
= En

(
Un

Vn

)
, (1)

where En are the quasiparticle energies, λ is the chemical potential, h =
t+Γ, and ∆ are the HF Hamiltonian and the pairing potential, respectively,
and Un and Vn are the upper and lower components of the quasiparticle
wave functions.

In coordinate representation, the HFB approach consists of solving (1)
as a set of integro-differential equations with respect to the amplitudes
U(En, r) and V (En, r). The HFB continuum is discretized by putting the
system in a large box with appropriate boundary conditions7.

In the configurational approach, the HFB equations are solved by matrix
diagonalization within a chosen set of single-particle basis wave functions
ψα with appropriate symmetry properties. The nuclear characteristics of
interest are determined by the matrix elements of the density matrix and
pairing tensor

ραβ =
∑

0≤En≤Emax

V ∗
αn(En)Vβn(En) ,

kαβ =
∑

0≤En≤Emax

V ∗
αn(En)Uβn(En) .

(2)

In configuration-space calculations, all quasiparticle states have discrete
energies En.

3. Transformed Harmonic Oscillator Basis

Suppose {ϕα(r)} represents the complete set of HO single-particle wave
functions depending on the spatial coordinate r and oscillator lengths
{Lx, Ly, Lz}. One can introduce a LST of the three–dimensional vector
space

r −→ r′ ≡ r′(r) =
r
R

f (R), (3)

where R is the referent surface

R =

√
x2

L2
x

+
y2

L2
y

+
z2

L2
z

. (4)

The LST function f(R) should have quite general mathematical proper-
ties ensuring that (3) is a valid invertible transformation of the three-
dimensional space.



February 6, 2003 13:2 WSPC/Trim Size: 9in x 6in for Proceedings florida

4

When one applies LST (3) to the HO set of wave functions, one obtains
another set of THO single-particle wave functions

ψα(r) =

√
f2(R)
R2

∂f(R)
∂R2

ϕα

(
r
Rf(R)

)
. (5)

Due to the Jacobian of the LST entering Eq.(5), the THO wave functions
are automatically orthonormalized. They have an asymptotic behavior

ψα(r →∞) ∼ exp
[
−1

2
f2(R)

]
, (6)

which suggests that if the LST function satisfies the asymptotic conditions

f(R) =

{
R for small R,

√
κR for large R,

(7)

then the THO wave functions at small distances are identical to the HO
wave functions, while at large distances they have the exponential asymp-
totic behavior.

In other words, the LST (3) generates, from a given complete set of
HO wave functions, another orthonormal and complete set of THO wave
functions (5) depending on an almost–arbitrary scalar LST function f(R).
The freedom in the choice of f(R) provides great flexibility in the THO
set {ψα(r)}, and this opens up the possibility of improving on undesirable
properties of the initial set. In particular, the use of the LST in THO can
modify the incorrect Gaussian asymptotic properties of deformed HO wave
functions.

4. Local–Scaling Transformation Function

The starting point of defining the LST function f(R) is to carry out a stan-
dard HFB+HO calculation for the nucleus of interest, thereby generating
an `=0 component

ρ̄(r) =
∫ π/2

0

ρ̄(r, θ) P`=0(cos(θ)) sin(θ) dθ (8)

of the (generally deformed) HO local density ρ̄(r, θ). Inspecting the density
(8), one can conclude that its logarithmic derivative ρ̄′/ρ̄ exhibits a well-
defined minimum near some point Rmin in the asymptotic region. The com-
parison shows that the HFB+HO densities and their logarithmic derivatives
are in almost perfect agreement with the coordinate-space HFB results up
to Rmin and, therefore, the HFB+HO densities are numerically reliable up
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to that point. The value of the density decay constant k emerging from
HFB+HO calculations is also in agreement with the coordinate-space HFB
results.

Beyond the point Rmin, however, the logarithmic derivative ρ̄′/ρ̄ starts
to oscillate around the coordinate-space HFB logarithmic density derivative
which smoothly approaches the constant value k. As a result, the logarith-
mic derivative of the HFB+HO density is very close to the coordinate-space
result around the midpoint Rm = (Rmax −Rmin)/2, where Rmax is the po-
sition of the first maximum of the logarithmic derivative for r > Rmin. Be-
yond the point Rm, the HFB+HO solution ρ̄(r) fails to capture the physics
of the coordinate-space results, especially in the far asymptotic region. It
is this incorrect large-r behavior that one tries to cure by introducing the
THO basis.

To this end, making use of the WKB asymptotic solution of the single-
particle Schrödinger equation and assuming that beyond the classical turn-
ing point only the state with the lowest decay constant k contributes to
the local density, one can introduce the following approximate local density
distribution

ρ̃(r) =





ρ̄(r) for r ≤ Rmin

A e−b r exp
[
− a

rs

(
a r3

3−s − 2 r2Rmin
2−s + r R2

min
1−s

)]

for Rmin ≤ r ≤ Rmax

B
exp

[
−2

∫ r
√

κ2+ C
r2 + 2m

~2
Ze2

r dr

]

r2
√

κ2+ C
r2 + 2m

~2
Ze2

r

for r ≥ Rmax

(9)

where ρ̄(r) is the HFB+HO density (8), the coefficients A and B are de-
termined from the matching condition for the density at points Rmin and
Rmax, respectively, while the constants a and b, and the power s, are deter-
mined from the condition that the logarithmic derivative ρ̃′/ρ̃ and its first
derivative are smooth functions at points Rmin and Rmax. The value of C is
fixed by the requirement that the logarithmic derivative of (9) coincides at
the mid point Rm with the `=0 component of the HFB+HO density. The
density ρ̃(r) should also be normalized to the appropriate particle number.

Since Eq. (9) approximates HFB local densities fairly well for all nu-
clei, the next step is to define the LST function so that it transforms the
HFB+HO density (8) into the density of Eq. (9). This requirement leads



February 6, 2003 13:2 WSPC/Trim Size: 9in x 6in for Proceedings florida

6

to the following first-order differential equation,

ρ̃(r) =
f2(R)
R2

∂f(R)
∂R

ρ̄
( r

R
f(R)

)
, (10)

which, for the initial condition f(0) = 0, can always be solved for f(R).
Once the LST function has been obtained, one needs simply to diagonal-

ize the HFB matrices in the corresponding THO basis. Most importantly,
no other information is required to construct the THO basis than the re-
sults of a standard HFB+HO calculation. As a consequence, one is able to
systematically treat large sets of nuclei within a single calculation.

5. Numerical Example

In this section, we present the results of HFB+THO calculations performed
for all the particle-bound even-even nuclei with Z ≤ 108 and N ≤ 188. We
have used the SLy4 Skyrme force parametrization23 in the particle–hole
channel and an intermediate (mixed) contact pairing force23 in the pairing
channel.

For a given mass number A, calculations were carried out for increasing
(decreasing) N −Z up to the nucleus with positive neutron (proton) Fermi
energy. Moreover, three independent sets of calculations were performed
assuming initial wave functions to correspond to oblate, spherical, and pro-
late shapes. The lowest of the local minima that were found for a given
nucleus was then identified with the ground-state solution. Mass charts
have been calculated with and without the Lipkin-Nogami prescription for
an approximate particle number projection, followed by an exact particle
number projection after the variation.

The results for the ground-states of all even-even nuclei with negative
Fermi energies, λn < 0 and λp < 0, are illustrated in Fig. 1. It is interesting
to note from Fig. 1(a) that there are fairly large regions of nuclei far from
stability with oblate shapes in their ground state. Nonetheless, it remains
the case for nuclei far from stability, as for nuclei in or near the valley of
stability, that there are more prolate ground states than oblate.

From Fig. 1(b), one can see that there exist numerous particle-bound
even-even nuclei (i.e., nuclei with negative Fermi energies) that at the same
time have negative two–neutron separation energies. Similar situation, but
corresponding to negative two-proton separation energies, is predicted close
to the proton–drip line. What this means is that even though these nu-
clei are bound against one–nucleon emission, they can nevertheless decay
spontaneously by emitting two-nucleons. This is related to the fact that
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Figure 1. Particle-bound even-even nuclei calculated within the HFB+THO method
for the Skyrme SLy4 interaction and mixed contact pairing force within Nsh = 20 major
shells: (a) quadrupole deformations β; (b)two-neutron separation energies S2n (in MeV).

the HFB Fermi energies are associated with a given configuration or shape.
Therefore, they tell us little about particle decays involving shape changes.
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6. Concluding Remarks

In this paper, we report the application of an improved version of the
configuration-space HFB method expanded in a Transformed Harmonic
Oscillator basis. The method can be used reliably in systematic studies of
wide ranges of nuclei, both spherical and axially deformed, extending all
the way out to nucleon drip lines.

As an illustration, we carried out a systematic study of all even-even
nuclei having Z ≤ 108 and N ≤ 184. We focused our discussion on the drip
line systems, finding that in several regions of the periodic table there exist
nuclei that are stable against one-particle emission but unstable against
pair emission. In the description of very weakly bound systems, small
changes of the effective interaction and the many-body treatment can have
important consequences, determining, for example, the precise location of
the drip lines. Thus, it is important to continue to improve the current
HFB+THO methodology to accommodate effects not presently being in-
cluded. Particularly important is the restoration of symmetries, either exact
or approximate.
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