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Hydrogen Demand and
Nuclear Energy

The size of individual hydrogen production 
plants and the total market demand for hydrogen  
are sufficient to justify development and use of 

nuclear reactors for hydrogen production



Liquid Fuels Production Is Rapidly Becoming 
the Major Market for Hydrogen

ORNL DWG 2001-107R2

Light
Sweet

Crude Oil

Input Refinery Transport Fuel

Past Dirty (sulfur, etc.):
(CH )1.5+ n

Hydrogen PlantNatural Gas

Nonfossil Hydrogen

Current
Transition

Near
Future

Future

(CH )1.5+ n

Heavy
Sour

Crude Oil
(CH )0.8 n Clean: (CH )2+ n

Clean: (CH )2 n
Heavy
Sour

Crude Oil
(CH )0.8 n



Nuclear Energy Is Now Compatible with 
Hydrogen Production Because of the Growth 
in the Size of Hydrogen Production Facilities
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Addition of Hydrogen Can Increase Liquid 
Fuel Yields per Barrel of Oil by Up to 15%

(Potential Nuclear-Hydrogen Midterm Market with a Hydrogen 
Source Not Coupled to Oil Prices)
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The Growing Hydrogen Demand Creates a Bridge to the 
Hydrogen Economy—With a Future Hydrogen Energy 

Demand That May Exceed That for Electricity
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Methods to Make Hydrogen 
Using Nuclear Energy

(Reactor Provides High-Temperature Heat)

Nuclear-assisted steam reforming of natural gas
Thermochemical cycles



Nuclear-Assisted Steam Reforming of Natural Gas Uses 
Nuclear High-Temperature Heat (~800oC) to Reduce the

Energy Requirements for Hydrogen Production
(Development Programs in Japan: Couple to High Temperature Test Reactor)
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Thermochemical Processes Use Nuclear High-
Temperature Heat and Water to Produce H2
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Leading Candidate with a Potential for Lower Peak Temperatures)



Efficient Hydrogen Production Imposes 
Tough Requirements on the Reactor

• Economics: match expected H2 plant size
− Largest H2 plants on order: 300 million ft3/d
− Required nuclear heat (50% efficiency): 2400 MW(t)

• High temperatures (750 to 1000°C)
• Heat delivered at constant temperature
• Low pressure to hydrogen facility

− Match process requirements
− Minimize potential accidental releases of toxic chemicals (off-

site public safety)

• Separation of hydrogen chemical plant  from the 
reactor (plant safety)
− Corrosive and hazardous chemicals



Advanced High 
Temperature Reactor

Hydrogen Production Requirements 
Define Reactor Requirements, Which, in Turn, 

Define Viable Reactor Options 



Status of Advanced High-
Temperature Reactor

• New reactor concept
− Concept ~2 years old
− Limited work
− Large uncertainties

• Working with:
− U. of California (Berkeley): Per Peterson
− Sandia National Laboratory: Paul Pickard



Advanced High-Temperature Reactor
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The AHTR Is NOT
a Molten Salt Reactor (MSR)

• MSR
− Fuel dissolved in the 

molten salt
− Aircraft Reactor 

Experiment operated at 
815 °C

• AHTR
− Solid fuel
− Molten salt coolant
− Uses MSR experience
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The AHTR Uses Graphite-Matrix Coated-Particle 
Fuels: Only Proven Fuel That Operates at 

Required Temperatures for Hydrogen Production
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AHTR Molten Salt Reactor Technology Was 
Developed in the Aircraft Nuclear Propulsion 

Program with Test Reactor Operations at 860°C 
(Aircraft and Hydrogen Reactor Requirements Similar : High Temperature and Low 
Pressure; Current Molten Salt Coolant Interests: AHTR and Fusion Reactor Cooling)



Molten Fluoride Salts Are Compatible 
With Graphite-Based Fuels
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• Molten Salt Reactor 
Experiment showed that 
salt and graphite are 
compatible

• Industrial experience
− Hall aluminum 

production since 1890s
− Graphite baths
− AlF3/NaF3 salt
− 1000°C



The Reactor Metals of Construction Are Noble 
With Respect to Metal Corrosion by Control of 

the Molten Salt Redox Potential

Metal fluoride equilib conc's in FLIBE in contact with pure metals at 
600C and 1 atm (total pressure)

Fluoride Corrosion products of these metals are shown here
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The AHTR Reduces Reactor Temperatures 
Compared to Gas-Cooled Reactors For Heat Delivered 

at the Same Temperatures
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Power Reactor Experience Shows That Liquid 
Coolants Minimize Peak Reactor Temperatures
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The High-Temperature, Low-Pressure Liquid Coolant 
Enables Passive Decay Heat Removal in Large Reactors

(One Example: Several Other Decay-Heat Cooling Options Exist)

01-043

Control
Rods

Hot Air Out

Similar to GE S-PRISM (LMR)

Argon Gap
- Heat Transfer ~T
- Thermal Switch Mechanism

4

Heat Rejection: Temperature Dependent
- LMR: 500-550 C [~1000 Mw(t)]o

- AHTR: 750-1000 C [>2000 Mw(t)]o

Air
Inlet
Fuel
(Similar to
MHTGR)
Reactor
Vessel

Argon Gap

Guard
Vessel

Reactor
Decay-Heat Cooling

System Characteristics
Passive Decay
Heat Removal



Higher Temperatures of the AHTR Allow 
Much Larger Reactors with the Same Size Systems

(S-PRISM and AHTR with Identical 9-m Vessels)
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Safety Strategy for 
Beyond Design-Basis Accidents



Molten Salts Have Large Margins to the Boiling Point 
and Boil-Off Before Major Fuel Failure
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Beyond-Design-Basis Accident Avoids Radionuclide 
Release By Decay Heat Conduction-To-Ground
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AHTR Hydrogen and Electricity 
Interfaces



The Reactor and Hydrogen Production Facility Will 
Be Physically Separated to Ensure Safety
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The AHTR Uses a Multi-Reheat Brayton Cycle for 
High-Efficiency Electricity Production

01-038R2

Control
Rods Hot Molten Salt

Cooling Water

Generator

Recuperator

Gas
Compressor

Hot Air Out

Air
Inlet

Fuel
(Coated-Particle,
Graphite Matrix)

Reactor
Vessel
Guard
Vessel

Reactor
Electric Power Cycle

Multi-Reheat Helium Brayton Cycle
Passive Decay
Heat Removal

Efficiency
- 48% at 750° C
- 56% at 750° C
- 59% at 1000° C



The Economics of High-Temperature Liquid-Cooled 
Reactors may be Superior to Gas-Cooled Reactors 

for Systems with the Same Safety Goals
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Programmatic Considerations



The AHTR Combines Existing Technologies 
While Supporting Future Technical Options
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The R&D Requirements For the 
AHTR and VHTR Have Much In Common
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Conclusions
• Growth in hydrogen demand and plant size makes 

nuclear hydrogen a realistic possibility
• Making hydrogen is tough
• Reactor design should match requirements
• The AHTR is a potentially competitive option

− New concept (~2 years)
− Potentially attractive economics
− Many design variants not evaluated
− Major uncertainties

• Characteristics of an AHTR program
− Based on coated particle (gas-cooled reactor) fuel
− Develops technology for MSR



Molten Salt Options
• Choice of molten fluoride salt is 

dependent upon multiple factors
− Neutronics
− Economics
− Melting points (mixtures lower melting points)

• Different fluoride salts have somewhat 
similar properties

• Leading candidates
− NaF-ZrF4 (50%/50%): used in Aircraft Reactor 

Experiment—experimental test reactor
− NaF-RbF-ZrF4 (8%/50%/42%)
− 7Li2BeF4


