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Abstract

In this paper, a new continuous observer is devel-
oped to determine range information (and hence the 3-
dimensional (3D) coordinates) of an object feature mov-
ing with affine motion dynamics (or the more general
Ricatti motion dynamics) with known motion parame-
ters. The unmeasurable range information is determined
from a single camera provided an observability condition
is satisfied that has physical significance. To develop the
observer, the perspective system is expressed in terms of
the nonlinear feature dynamics. The structure of the pro-
posed observer is inspired by recent disturbance observer
results. The proposed technique facilitates a Lyapunov-
based analysis that is less complex than the sliding-mode
based analysis derived for recent discontinuous observer
designs. The analysis demonstrates that the 3D task-
space coordinates of the feature point can be asymptoti-
cally identified.

1 Introduction

The objective of most vision problems involves interpret-
ing the motion of features of a 3-dimensional (3D) object
through 2D images that are projected perspectively1 from
the 3D feature; hence, as stated in [5] vision systems are
inherently perspective. Most research related to perspec-
tive systems have targeted the identification of the motion
parameters (e.g., feature velocities) by using measureable
state information. For example, for the following second
order system [5]·

ẋ1
ẋ2

¸
=

·
a1 a2
a3 a4

¸ ·
x1
x2

¸
, (1)
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ical and Environmental Research (OBER) Environmental Manage-
ment Sciences Program (EMSP) project ID No. 82797 at ORNL, a
subcontract to ORNL by the Florida Department of Citrus through
the University of Florida, and by U.S. NSF Grant DMI-9457967,
ONR Grant N00014-99-1-0589, a DOC Grant, and an ARO Auto-
motive Center Grant.

1Other projective models (e.g., Orthographic Projection) have
also been used in literature for vision research; however, the most
commonly accepted model is the perspective projection.

the typical problem is to utilize the measureable states
x1(t) and x2(t) to determine the unmeasurable parame-
ters ai(t) ∀i = 1, 2, 3, 4 and possibly the unknown ini-
tial conditions x1(t0) and x2(t0). An excellent overview
of research that has targeted this and similar problems
(typically using an extended Kalman filter) is provided in
[4, 5, 7].
In contrast to the class of perspective problems associ-

ated with using the measureable states to determine the
parameters, several researchers have recently investigated
the problem when the motion parameters are known along
with the image-space feature coordinates, and the goal
is to determine the unknown states (i.e., the actual 3D
position of the feature). For example, a discontinuous
recursive identifier based observer was developed in [7]
to exponentially identify range information of features
(i.e., points, lines, and planar curves) on an affine plane
from successive images of a camera that is moving in a
known manner (i.e., with known motion parameters). In
[1], Chen and Kano develop a new discontinuous observer
for a more general perspective system that exponentially
forces the observation error to an arbitrarily small neigh-
borhood (i.e., uniformly ultimately bounded (UUB)).
In this paper, we develop a continuous observer to de-

termine range information (and hence, the 3D task-space
coordinates) for an object feature moving with general
affine motion dynamics with known motion parameters.
As in [1, 10], the perspective system examined in this
paper is more general than the skew-symmetric system
examined in [7]. The unmeasurable range information is
determined from a single camera provided an observabil-
ity condition similar to [1, 7] is satisfied. As stated in
[5], many geometric structures of a perspective system
are lost if they are studied via linearization; hence, to de-
velop the observer, the perspective system is transformed
into a nonlinear dynamic system (i.e., the image-space
feature dynamics). Based on the nonlinear dynamics of
the image-space signals a continuous observer is designed
that is inspired by the recent disturbance observer results
in [3, 8]. The structure of the proposed observer facili-
tates a Lyapunov-based analysis that is less complex than
the sliding-mode based analysis derived for the discontin-
uous observer design of [1] (and the unknown states can
be exactly determined rather than “almost” determined
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as in the UUB result in [1]). The analysis demonstrates
that the 3D task-space coordinates of the feature point
can be asymptotically identified. The proposed observer
can also be applied to object motion described by Ricatti
dynamics and can be extended to n-dimensional perspec-
tive systems.

2 Perspective System
Consider an object feature undergoing an affine motion
as follows [1, 10] ẋ1

ẋ2
ẋ3

 =
 a11 a12 a13
a21 a22 a23
a31 a32 a33

 x1
x2
x3

+
 b1
b2
b3

 (2)

where x1(t), x2(t), x3(t) ∈ R denote the unmeasurable
task-space coordinates of an object feature along the X,
Y , and Z axes of an inertial reference frame, respectively,
with the Z axis being perpendicular with an image plane
formed by a camera (i.e., the coordinate x3(t) denotes
the depth from the image plane to the task-space object
feature along the optical axis Z). In (2), the parameters
ai,j(t) ∈ R and bi(t) ∀i, j = 1, 2, 3 denote the known mo-
tion parameters [1, 10]. The affine motion dynamics intro-
duced in (2) are expressed in a general form that describes
an object motion that undergoes a rotation, translation,
and linear deformation [10]. The measurable image-space
coordinate of a feature, denoted by y(t) ∈ R2, is given as
follows

y ,
£
y1 y2

¤T
=
h x1
x3

x2
x3

iT
. (3)

The affine dynamics introduced in (2) and the image-
space signal introduced in (3) define the perspective sys-
tem [1]. After taking the time derivative of (3) and utiliz-
ing (2), the image-space trajectory of the object feature
can be obtained as follows

ẏ1 =
a11x1 + a12x2 + a13x3 + b1

x3
(4)

−x1 (a31x1 + a32x2 + a33x3 + b3)
x23

ẏ2 =
a21x1 + a22x2 + a23x3 + b2

x3
(5)

−x2 (a31x1 + a32x2 + a33x3 + b3)
x23

.

To facilitate subsequent analysis, the time derivative of
the inverse of x3(t) is determined as follows

d

dt

µ
1

x3

¶
=
−a31x1 − a32x2 − a33x3 − b3

x23
. (6)

By utilizing (3), the expressions given in (4-6) can be
rewritten as follows

ẏ1 = a13+(a11 − a33) y1+a12y2−a31y21−a32y1y2+f1 (7)

ẏ2 = a23+a21y1+(a22 − a33) y2−a32y22−a31y1y2+f2 (8)
d

dt

µ
1

x3

¶
= − 1

x3
(a31y1 + a32y2 + a33)− b3

x23
(9)

where f1(x3, y1), f2(x3, y2) ∈ R are unmeasurable sig-
nals2 defined as follows

f1 ,
1

x3
(b1 − b3y1) (10)

f2 ,
1

x3
(b2 − b3y2) . (11)

For the perspective system given in (2) and (3), the fol-
lowing assumptions are made [1].

Assumption 1: The known motion parameters ai,j(t)
and bi(t) ∀i, j = 1, 2, 3 introduced in (2) are bounded
functions of time, the parameters ai,j(t) are first or-
der differentiable, and the parameters bi(t) are sec-
ond order differentiable.

Assumption 2: The image-space feature coordinates
y1(t) and y2(t) are bounded functions of time (i.e.,
y1(t), y2(t) ∈ L∞).

Assumption 3: The object feature motion avoids the
degenerate case where the feature intersects the im-
age plane. That is, x3(t) > ε0 where ε0 ∈ R is an
arbitrarily small positive constant, and hence, 1

x3(t)
∈

L∞. Moreover, we also assume that x3(t) ∈ L∞.

Remark 1 Assumptions 2 and 3 are standard assump-
tions (see also [1, 7]) that are practically properties of the
physical system rather than assumptions.

Remark 2 Based on Assumptions 1-3, the expressions
given in (2) and (7-11) can be used to determine that

ẋ3(t), ẏ(t), d
dt

³
1

x3(t)

´
, f1(x3, y1), f2(x3, y2) ∈ L∞.

Given that these signals are bounded, the development
provided in the Appendix can be used along with Assump-
tions 1-3 to also determine that ḟ1(·), ḟ2(·), f̈1(·), and
f̈2(·) ∈ L∞.

3 Observation Problem

3.1 Objective

The objective in this paper is to determine the unmeasur-
able state x3(t) of the perspective vision system described
by (2) and (3). From (3) and the fact that y1(t) and y2(t)
are measurable, it is clear that if x3(t) is identified then
the complete 3D task-space coordinate of the feature can
be determined. To achieve this objective, an observer
is constructed based on the unmeasurable image-space
dynamics for y(t). To quantify the performance of the

2The signals f1(x3, y1), and f2(x3, y2) are unmeasurable due to
a dependence on the unmeasurable state x3(t).
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observer, a measurable observer estimation error signal,
denoted by e(t) ∈ R2, is defined as follows

e ,
£
e1 e2

¤T
=
£
y1 − ŷ1 y2 − ŷ2

¤T
(12)

where ŷ(t) , [ŷ1(t), ŷ2(t)]T ∈ R2 denotes a subsequently
designed observer signal. To facilitate the subsequent de-
velopment, a filtered observation error signal, denoted by
r(t) ∈ R2, is designed as follows

r ,
£
r1 r2

¤T
=
£
ė1 + α1e1 ė2 + α2e2

¤T
(13)

where α1, α2 ∈ R denote positive constant gains. Based
on the dynamics in (7) and (8) and the definitions in-
troduced in (12) and (13), it is clear that r(t) is unmea-
surable due to the fact that ẏ(t) is a function of the un-
measurable disturbance terms f1(x3, y1) and f2(x3, y2).
The subsequent development will target the design of es-
timates for f1(x3, y1) and f2(x3, y2) based on the strategy
that if the mismatch between the estimates and the dis-
turbance terms f1(x3, y1) and f2(x3, y2) can be driven to
zero, then x3(t) can be identified by exploiting the fact
that bi(t) ∀i = 1, 2, 3 and the states y1(t) and y2(t) are
measurable. Specifically, from (10) and (11), the inverse
of the square of x3(t) can be determined as followsµ

1

x3

¶2
=

f21 + f
2
2

(b1 − b3y1)2 + (b2 − b3y2)2
. (14)

Based on the structure of (14), it is clear that the follow-
ing observability condition must be satisfied

(b1 − b3y1)2 + (b2 − b3y2)2 > 0 . (15)

That is, x3(t) can be identified once the mismatch be-
tween the disturbance terms f1(x3, y1) and f2(x3, y2)
and the respective estimates are driven to zero.

Remark 3 The observability condition introduced in
(15) is not required by the subsequent analysis to prove
that the observer design remains bounded. That is, the
subsequent analysis can be used to prove that f1(x3, y1)
and f2(x3, y2) can be identified independently of (15);
however, (15) is required to prove that x3(t) can be identi-
fied. In [7], a discussion is provided regarding the physical
justification of (15) with regard to the focus of expansion.

3.2 Observer Design and Error System

By taking the time-derivative of (12) the following error
dynamics can be obtained for e(t)

ė = ẏ −
·
ŷ . (16)

Based on the structure of (7), (8), and (16), the elements
of the observer signal ŷ(t) are designed as follows

·
ŷ1 = a13 + (a11 − a33) y1 (17)

+a12y2 − a31y21 − a32y1y2 + f̂1

·
ŷ2 = a23 + a21y1 + (a22 − a33) y2 (18)

−a32y22 − a31y1y2 + f̂2
where f̂1(t), f̂2(t) ∈ R denote subsequently designed esti-
mates for the unmeasurable signals f1(t) and f2(t) intro-
duced in (7) and (8). After substituting (7), (8), (17), and
(18) into (16), the following error dynamics are obtained

ė =
£
f1 − f̂1 f2 − f̂2

¤T
. (19)

By taking the time-derivative of (13) the following error
dynamics can be obtained for r(t)

ṙ =

 ḟ1 −
·
f̂1 + α1

³
f1 − f̂1

´
ḟ2 −

·
f̂2 + α2

³
f2 − f̂2

´
 (20)

where (19) and the time derivative of (19) have been uti-
lized. Based on the structure of (20) and the subsequent
analysis, the estimates f̂1(t) and f̂2(t) are designed as
follows3

·
f̂1 = −(ks1 + α1)f̂1 + γ1sgn(e1) + α1ks1e1 (21)

·
f̂2 = −(ks2 + α2)f̂2 + γ2sgn(e2) + α2ks2e2 (22)

where ks1, ks2, γ1, γ2 ∈ R denote constant observer gains
and the notation sgn(·) is used to indicate the standard,
signum function. After substituting (21) and (22) into
(20) and then adding and subtracting the terms ks1f1(x3,
y1) and ks2f2(x3, y2), the following expression can be
obtained

ṙ = η −
·
ks1r1 + γ1sgn(e1)
ks2r2 + γ2sgn(e2)

¸
(23)

where η(t) ,
£
η1 η2

¤T ∈ R2 is defined as follows
η ,

·
ḟ1 + (ks1 + α1) f1
ḟ2 + (ks2 + α2) f2

¸
. (24)

Remark 4 The time derivative of (24) can be deter-
mined as follows

η̇ =

·
f̈1 + (ks1 + α1) ḟ1
f̈2 + (ks2 + α2) ḟ2

¸
. (25)

From (24) and (25), the statements in Remark 2 can be
used to conclude that η(t), η̇(t) ∈ L∞.
Remark 5 The structure of the disturbance observer
given by (21) and (22) contains discontinuous terms;
however, it is interesting to note that the overall structure
of the observer is not discontinuous. That is, after a close

examination of (17) and (18), it is clear that
·
ŷ1(t) and

3The design of the estimates f̂1(t) and f̂2(t) is inspired by the
development given in [3, 8].
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·
ŷ2(t) only contain the low pass filtered outputs f̂1(t) and
f̂2(t) of the discontinuous terms in (21) and (22). There-
fore, since the observer strategy only utilizes expressions
that are functions of f̂1(t) and f̂2(t), the applied observer
signals are not discontinuous.

4 Analysis

The following theorem and associated proof can be used
to conclude that the observer design of (17), (18), (21),
and (22) can be used to identify the unmeasurable state
x3(t).

Theorem 1 Given the perspective system in (2) and (3),
the unmeasurable state x3(t) (and hence, the 3D task-
space coordinates of the object feature) can be asymptoti-
cally determined using the observer design given in (17),
(18), (21), and (22) provided the constants γ1 and γ2 in-
troduced in (21) and (22) are selected according to the
following sufficient conditions

γ1 ≥ |η1|+ |η̇1| γ2 ≥ |η2|+ |η̇2| (26)

where η(t) is defined in (24), and the observability condi-
tion introduced in (15) is satisfied.

Proof: To prove Theorem 1, we first define a non-
negative function V (t) as follows

V , 1

2
rT r . (27)

After taking the time derivative of (27) and substituting
for the error system dynamics given in (23), the following
expression can be obtained

V̇ = −ks1r21 − ks2r22 (28)

+(ė1 + α1e1) (η1 − γ1sgn(e1))

+ (ė2 + α2e2) (η2 − γ2sgn(e2)) .

After integrating (28) and exploiting the fact that

ξ · sgn(ξ) = |ξ| ,

the following inequality can be obtained

V (t) ≤ V (t0)−
Z t

t0

¡
ks1r

2
1 (σ) + ks2r

2
2 (σ)

¢
dσ (29)

+α1

Z t

t0

|e1 (σ)| (|η1 (σ)|− γ1)) dσ +Ω1

+α2

Z t

t0

|e2 (σ)| (|η2 (σ)|− γ2) dσ +Ω2

where the auxiliary terms Ω1(t), Ω2(t) ∈ R are defined as
follows

Ω1 ,
Z t

t0

ė1 (σ) η1 (σ) dσ (30)

−γ1
Z t

t0

ė1 (σ) sgn(e1 (σ))dσ

Ω2 ,
Z t

t0

ė2 (σ) η2 (σ) dσ (31)

−γ2
Z t

t0

ė2 (σ) sgn(e2 (σ))dσ.

After evaluating the integral expressions in (30), the fol-
lowing expressions can be obtained

Ω1 = e1 (σ) η1 (σ)|tt0 dσ −
Z t

t0

e1 (σ) η̇1 (σ) dσ (32)

− γ1 |e1 (σ)| |tto
= e1 (t) η1 (t)−

Z t

t0

e1 (σ) η̇1 (σ) dσ − γ1 |e1 (t)|
−e1 (t0) η1 (t0) + γ1 |e1 (t0)| .

By performing the same operations, Ω2(t) can be evalu-
ated as follows

Ω2 = e2 (t) η2 (t)−
Z t

t0

e2 (σ) η̇2 (σ) dσ (33)

−γ2 |e2 (t)|− e2 (t0) η2 (t0)
+γ2 |e2 (t0)| .

After substituting (32) and (33) into (29) and performing
some algebraic manipulation, the following inequality can
be obtained

V (t) ≤ V (t0)−
Z t

t0

¡
ks1r

2
1 (σ) + ks2r

2
2 (σ)

¢
dσ (34)

+Ω3 + ζ0

where the auxiliary terms Ω3(t), ζ0 ∈ R are defined as
follows

Ω3 , α1

Z t

t0

|e1 (σ)| (|η1 (σ)|+ |η̇1 (σ)|− γ1) dσ (35)

+α2

Z t

t0

|e2 (σ)| (|η2 (σ)|+ |η̇2 (σ)|− γ2) dσ

+ |e1 (t)| (|η1 (t)|− γ1) + |e2 (t)| (|η2 (t)|− γ2)

ζ0 , −e1 (t0) η1 (t0) + γ1 |e1 (t0)| (36)

−e2 (t0) η2 (t0) + γ2 |e2 (t0)| .
Provided the constants γ1 and γ2 are selected according
to the inequalities introduced in (26), Ω3(t) will always
be negative or zero; hence, the following upper bound can
be developed

V (t) ≤ V (t0)−
Z t

t0

¡
ks1r

2
1 (σ) + ks2r

2
2 (σ)

¢
dσ+ ζ0 . (37)
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From (27) and (37), the following inequalities can be de-
termined

V (t0) + ζ0 ≥ V (t) ≥ 0; (38)

hence, r(t) ∈ L∞. The expression in (37) can be used to
determine thatZ ∞

0

¡
ks1r

2
1 + ks2r

2
2

¢
dσ ≤ V (t0) + ζ0 − V (∞)(39)

≤ V (t0) + ζ0 <∞ .

By definition, (39) can now be used to prove that r(t) ∈
L2. From the fact that r(t) ∈ L∞, (12) and (13) can
be used to prove that e(t), ė(t), ŷ(t), and

·
ŷ(t) ∈ L∞.

The expressions in (17), (18), (21), and (22) can be used

to determine that f̂1(t), f̂2(t),
·
f̂1(t), and

·
f̂2(t) ∈ L∞.

Based on the facts that f1(x3, y1), f2(x3, y2), ḟ1(·), and
ḟ2(·) ∈ L∞, the expressions in (23) and (24) can be used
to prove that η(t), ṙ(t) ∈ L∞. Based on the fact that
r(t), ṙ(t) ∈ L∞ and that r(t) ∈ L2, Barbalat’s Lemma [9]
can be used to prove that

lim
t→∞ r(t) = 0 . (40)

From (40), Lemma 1.6 of [2] can be used to prove that

lim
t→∞ e(t), ė(t) = 0 . (41)

Given the result in (41), the expression given in (12) can
be used to determine that

lim
t→∞ ŷ1(t) = y1 lim

t→∞ ŷ2(t) = y2 (42)

and (19) can be used to determine that

lim
t→∞ f̂1(t) = f1 lim

t→∞ f̂2(t) = f2 . (43)

If the observability condition given in (15) is satisfied (i.e.,
if either f1(x3, y1) or f2(x3, y2) are nonzero), then the re-
sult in (43), the fact that the parameters bi(t) ∀i = 1, 2, 3
are assumed to be known, and the fact that the image-
space signal y(t) is measurable can be used to identify
the unknown task-space parameter x3(t) from (14). Once
x3(t) is identified, the complete 3D task-space coordinates
of the object feature can be determined from (3). ¤

Remark 6 In addition to the general affine motion
model considered in (2), several results in literature have
examined the following Riccati motion dynamics (e.g.,
[1, 4, 6]) ẋ1
ẋ2
ẋ3

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 x1
x2
x3

+
 b1
b2
b3

 (44)

+

 c1 c2 c3 0 0 0
0 c1 0 c2 c3 0
0 0 c1 0 c2 c3




x21
x1x2
x1x3
x22
x2x3
x23

 .

For these dynamics, the same expressions given in (7-11)
can be obtained, and hence, the observer design in (17),
(18), (21), and (22) still applies for this motion field.
Note that the discontinuous observer developed in [1] for
the affine motion dynamics in (2) can also be applied to
the motion dynamics in (44). As in [1], the observer
system design in this paper can also be extended to general
n-dimensional perspective systems.

5 Conclusion

In this paper a new continuous observer inspired by the
development in [8] was developed to identify an unmea-
surable range signal (and hence the 3D task-space coordi-
nates of an object feature) via a single camera given the
motion parameters of a general affine system (or Ricatti
system). To develop the observer the affine perspective
system is transformed into the nonlinear feature dynam-
ics. Through a Lyapunov-based analysis, the observer
was proven to asymptotically regulate the observation er-
rors. The impact of these results are that a continuous
observer can be used to enable a monocular vision system
to identify the range parameter (even in the presence of
sensor noise) of an object moving (with known motion
parameters) with an affine or Riccati motion dynamics.
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A Appendix

To prove that ḟ1(·), ḟ2(·) ∈ L∞, the time derivative of
(10) and (11) is determined as follows

ḟ1 =
1

x3

³
ḃ1 − ḃ3y1 − b3ẏ1

´
+
d

dt

µ
1

x3

¶
(b1 − b3y1) (45)

ḟ2 =
1

x3

³
ḃ2 − ḃ3y2 − b3ẏ2

´
+
d

dt

µ
1

x3

¶
(b2 − b3y2) .

(46)

The facts that ẏ(t), d
dt

³
1

x3(t)

´
∈ L∞ can be used along

with Assumptions 1-3 to conclude from (45) and (46) that
ḟ1(·), and ḟ2(·) ∈ L∞. To prove that f̈1(·), f̈2(·) ∈ L∞,
the time derivative of (45) and (46) can be determined as
follows

f̈1 =
d

dt

µ
1

x3

¶³
ḃ1 − ḃ3y1 − b3ẏ1

´
(47)

+
1

x3

³
b̈1 − b̈3y1 − 2ḃ3ẏ1 − b3ÿ1

´
+
d2

dt2

µ
1

x3

¶
(b1 − b3y1)

+
d

dt

µ
1

x3

¶³
ḃ1 − ḃ3y1 − b3ẏ1

´

f̈2 =
d

dt

µ
1

x3

¶³
ḃ2 − ḃ3y2 − b3ẏ2

´
(48)

+
1

x3

³
b̈2 − b̈3y2 − 2ḃ3ẏ2 − b3ÿ2

´
+
d2

dt2

µ
1

x3

¶
(b2 − b3y2)

+
d

dt

µ
1

x3

¶³
ḃ2 − ḃ3y2 − b3ẏ2

´

where

ÿ1 = ȧ13 + (ȧ11 − ȧ33) y1 + (a11 − a33) ẏ1 (49)

+ȧ12y2 + a12ẏ2 − ȧ31y21 − 2a31y1ẏ1
−ȧ32y1y2 − a32ẏ1y2 − a32y1ẏ2 + ḟ1

ÿ2 = ȧ23 + ȧ21y1 + a21ẏ1 + (50)

(ȧ22 − ȧ33) y2 + (a22 − a33) ẏ2
−ȧ32y22 − 2a32y2ẏ2 − ȧ31y1y2
−a31ẏ1y2 − a31y1ẏ2 + ḟ2

d2

dt2

µ
1

x3

¶
= − d

dt

µ
1

x3

¶
(a31y1 + a32y2 + a33) (51)

− ḃ3
x23
+ 2

b3ẋ3
x33

− 1
x3
(ȧ31y1 + a31ẏ1 + ȧ32y2 + a32ẏ2 + ȧ33)

and the expressions given in (7-11) were utilized. The
expressions given in (47-51), Assumptions 1-3, and the

facts that ẋ3(t), ẏ(t), d
dt

³
1

x3(t)

´
, f1(x3, y1), f2(x3, y2) ∈

L∞ can now be used to prove that f̈1(·), f̈2(·) ∈ L∞.
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