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CQuantum bang-bang control X

» Tailored open-loop control of decoherence

» New Results: Targeting Qubit States
» Spin-Boson Model
» Control Strategy
» Arbitrary Target State

QComparison with quantum feedback scheme /
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» Quantum bang-bang control:

Viola L. and Lloyd S., Phys. Rev. A 58(4)
2733 (1998)

AlIM: Maintain the state of a two-
level system, using a rapid
sequence of identical control
pulses to counteract the effect of

Cvironmental decoherence /




Tailored open-loop control of decoherence

V. Protopopescu, R. B. Perez, C. D’Helon, and J. Schmulen
Preprint: quant-ph/0202141

» Decoherence and control are taken to act
simultaneously

» Deals with general decoherence processes

» The required control is tailored to the (known)
decoherence effects

» The state to be maintained must be known a priori
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Graph 1. Control results for
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K Drive the state of a two-level system to an \

arbitrary pure target state, and then maintain its
coherence

» Comparison of performance vs. quantum
feedback scheme for the spontaneous emission of
a two-level atom

Wang, Wiseman and Milburn, Phys. Rev. A 64 # 063810 (2001)

» Extending the applicability of the quantum
feedback scheme to arbitrary pure target states
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»Hamiltonian: H = H,+ H, + H,. + H,,
» The whole system evolves unitarily:
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» Transform to interaction-picture (rotating wave approx.
and zero detuning)

» The evolution operator has a formal solution:
1

Ui(s.e.r) = Tlexp{— [ ' Hi(7)}]

» Use general Baker-Hausdorff theorem to expand the
evolution operator into an infinite product of exponentials:

ot T AHL) o i 7 dtH () o () [T dt [ (1), Ha ()]

» H=H,+H, ;non-commuting operators




» The evolution operator is approximated to first order
in the magnitude of the control pulses, V(t), and the

coupling strength parameter, g, of the system-
environment interaction

» The environment is traced out to obtain explicit
expressions for the elements of the reduced density
matrix of the qubit

long timescale /\ short timescale

Thermal decoherence Adiabatic decoherence
population change phase decay
between levels
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» Assuming the decoherence
function is known, we can
explicitly calculate the external
control that drives the initial
value of a density matrix
element, to its target value:

pi(9(8),1(t)) — p;"ar9et

» This control is implemented as a
pulse acting on the two-level
system, and affects every
density matrix element




» The qubit is driven from the initial to the target states via
a number of intermediate states

» Between 2 intermediate states, the equations for the
density matrix elements determine the control value, I(t),
required: pij(g(t)i I(t)) — pijlntermediate

» Each density matrix element (real and imaginary parts)
Is solved for in turn

» A cycle of 8 steps will drive each of the density matrix
elements towards the next intermediate state

» The target state is reached quickly for fast control pulse
rates
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» The qubit can be driven
to any pure state in the y-z
plane of the Bloch sphere

» Small number of
intermediate states

» Low control pulse
strength 1(t)<0.1

» High fidelity >0.99 for
final state

» Min. transition time ~
100 control steps for
diametrically-opposite
states
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Graph 3. Control results for |0> - |1>




» The qubit can be driven
to any pure state in the y-z
plane of the Bloch sphere

» 100 intermediate states
for smooth transition

» Low control pulse
strength 1(1)<0.01

» High fidelity >0.99 for
final state

» Transition time ~ 1000
control steps for
diametrically-opposite
states




» The qubit can be driven
to any pure state in the x-z
plane of the Bloch sphere

» 100 intermediate states
for smooth transition

» Low control pulse
strength 1(t)<0.01

» High fidelity >0.99 for
final state

» Transition time ~ 1000
control steps for
diametrically-opposite
states




1
05} 05}
0 0
05 0.5
K 500 1000 1500 K
Refp,,}

1 1
05} 05}
0 0
05 05}
1 500 1000 1500 i

Re{p ] 1}

Re{qu}

e nitial
—_— target

— Gontrolled

500

1000

RE{PQZ}

1500

500

1000

Graph 4. Control results for |0> — |1>

1500




Re{p,,} Re{p,,)

05¢ 0.5}
0 0 =
0.5 -0.5 = jnitial
= farget
GO Ntrolled
-1 L 1 1 _1 L r 1
0 50 100 150 0 50 100 150
Refp, } Re{p,,,}
1 . 1
05¢ 0.5}
0 ” 0
-0.5 -0.5
-1 - : : -1 . . .
0 50 100 150 0 50 100 150

Graph 5. Ten intermediate states for |0> - |1>




4 N L

» The state of a two-
level system, can be
driven reversibly from
an arbitrary pure state
to a pure target state,
by using a sequence
of two different control
Hamiltonians,

H; < o,sin¢ + o, cos¢

< 4

CESAR
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» The control Hamiltonian H_(¢) drives the qubit along
the edge of the plane S;:

rsino + ycoso = 0,

which always contains the z axis of the Bloch sphere

> S, rotated by an angle ¢ around the z-axis with
respect to the reference x-z plane

» Order and sign of the Hamiltonians is reversed to
return to the initial state




KI‘ arget fidelity of the final state fluctuates, but very \

close to unity

» Smoothness and length of transition determined by
the number of intermediate states, and the rate of the
control pulses

» Open-loop control is qualitatively similar to the
Quantum Feedback Scheme of Wang et al., at the
ensemble level (in the thermal decoherence regime)

» Less stringent requirements:

» high control pulse rate, low control pulse strength
\> a priori knowledge of decoherence function //é
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/1. Driving between mixed initial and target\
states

2. Open-loop control to drive a 2-qubit
system to a maximally entangled state

3. Use global control for a system of N

\ Independent qubits /
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