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Objective: Provide an efficient approach to…

1. Evaluating and summing
up a set of function 
samples

2.   Solving the continuous 
Global Optimization 
Problem (GOP) 

APPLICATION

Evaluation of multi-dimensional 

integrals/sums 

and stochastic quantities

APPLICATION

Global optimization problems 

occur in most scientific and 

technical fields
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Novelty of Proposed Approach

Previous classical algorithms are inefficient, 
whereas quantum algorithms rely on the 
parallelism of entangled quantum states, which 
are difficult to maintain

The proposed ensemble algorithms use the 
parallelism of mixed states in an ensemble of 
spins, not subject to decoherence
A given function can be evaluated on all spins at 
once, and the result(s) are extracted by 
ensemble average measurements
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Summing Algorithm:
Statement of the Problem

Let f : {1, 2, . . . ,N} → [0, 1] be a real-valued function 
defined on a discrete set of N = 2n samples

We want to evaluate efficiently the sum SN,

SN = Σi f(i)
where i = 1, 2, . . . ,N

Efficiency is understood in relation to the query 
complexity of the algorithm, i.e., the number of times the 
function f is called to be evaluated
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Summing Algorithm:
Finite-Precision Values

Physical system:
input register with n two-level spins → N = 2n samples
output register with k two-level spins → specifies the 

value precision δ=2-k

The function values f(i) are approximated by finite-
precision values fi

Therefore we are actually evaluating the sum SN,k

SN,k = Σi fi
which converges exponentially fast to the sum SN, as the 
number of spins k increases
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Summing Algorithm:
Outline of the Algorithm

1. Initialization of an ensemble mixture of input states
representing all of the numbers i = 1, 2, . . . ,N with 
equal weight

2. The function f is applied to the mixture, using a single 
unitary transformation Uf to perform the function 
evaluation for every input state i at once. This 
parallelism results in an ensemble mixture which 
contains all of the values fi in the output register

3. Measurement of the output register averages the 
contributions from the entire ensemble, yielding a 
signal proportional to the sum SN,k
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Summing Algorithm:
1. Initialization

The n-spin input register is initialized in an equally-
weighted mixed state that represents all of the sample 
points i = 1, 2, . . . ,N

The k-spin output register is initially set to zero
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Summing Algorithm:
Binary Encoding Scheme

The function values f(i) can be approximately 
encoded in the output register using the following 
scheme:
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Summing Algorithm:
2. Function Evaluation

The function f is evaluated by applying a reversible 
unitary transformation Uf

This operation transforms the state of the output 
register to a mixture that represents all of the 
approximate function values fi, simultaneously:
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Summing Algorithm:
3. Measurement

Each of the spins in the output register generates an 
output signal, γj, proportional to the number of spin 
sub-ensembles that have the j-th spin in the “up” 
state

The sum of the normalized output signals, weighted 
by the binary factor 2j-1, is an ensemble average of all 
the approximate function values fi in the output 
register:
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GOP:
Statement of the Problem

Deceptively simple: find the 
absolute minimum, xmin, of a given 
objective function f over the range    
of its variables

The function may be specified 
analytically, or by a black-box 
process, a hidden algorithm known as 
an oracle

Each function evaluation involves a costly computational 
sequence, therefore the number of function evaluations i.e., 
the query complexity, needs to be kept to a minimum



12

GOP:
Outline of the Algorithm

1. Map the GOP to a discrete search problem, assuming 
that we have additional information about the objective 
function f

2. Apply Bruschweiler's ensemble search algorithm to 
obtain a value belonging the basin of attraction of the 
global minimum, in a number of steps that grows 
logarithmically with the input size

3. Use advanced descent techniques to find the global 
minimum, xmin, within its basin of attraction
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GOP:
1. Map the GOP to a discrete search problem

Additional information about the objective function is 
available for many classes of GOP, but cannot be 
exploited within classical optimization algorithms
We have established a set of conditions that are reasonable and can be 
relaxed in principle:

(i) the function has a unique global minimum, fmin=0 at x=xmin

(ii) the values of all other minima are greater than a constant δ > 0, and

(iii) the size of the basin of attraction for fmin=0, measured at f(x)=δ, is known

Apply the transformation g=ROUND[f1/m] (m>>1), 
g∈{0,1}, and discretize the domain [0,1]d, with a 
precision that gives only one output equal to zero, 
f(x0)=0, and all the other outputs equal to one
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“Divide and conquer” scheme to test whether the zero-
valued output of the discretized GOP, x0, belongs to 
exponentially finer and finer partitions of the set of 
input values (x1,…xN)

After each measurement, the partition containing x0 is 
selected and then subdivided into another two equal 
partitions

Each test to determine the partition that contains x0, 
reduces the size of the set of input values that 
contains x0 by a factor of 2, therefore the query 
complexity of the algorithm is O(log2N)

GOP:
2. Apply Brüschweiler's ensemble search algorithm 
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GOP:
3. Descent to the global minimum

Return to the original function f and apply the descent 
technique of choice at the value x0, to obtain the 
actual global minimum xmin

If the basin of attraction of the global minimum is narrow, the 
gradients of the function f may reach very large values that cause 
overshooting

Once that phase of the algorithm is reached, one can proceed by 
applying a scaling (dilation) transformation that maintains the 
descent mode but moderates the gradients

On the other hand, as one approaches the global minimum, the 
gradients become very small and certain acceleration techniques 
based on non-Lipschitzian dynamics may be required
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Summing Algorithm:
Query Complexity

If the measurement sensitivity is adequate to distinguish 
between distinct normalized output signals with a precision 
equal to or better than 1/N, the query complexity is O(1),
i.e., the function f is called to be evaluated once

For large enough N, significant differences between 
normalized output signals, differences larger than 1/N, will 
not be detectable in a single experimental trial

To enhance the measurement sensitivity, the algorithm 
has to be repeated a number of times, which in turn 
increases the query complexity
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GOP:
Query Complexity

If the measurement sensitivity is adequate to distinguish 
between distinct output signals with a precision equal to or 
better than 1/N, the query complexity is determined by the 
ensemble search algorithm: O(log2N)

The precision requirement is necessary for the first 
partition test, but may be relaxed for subsequent tests

For large enough N, significant differences between 
output signals, differences larger than 1/N, will not be 
detectable in a single experimental trial

To enhance the measurement sensitivity, the algorithm 
has to be repeated a number of times, which in turn 
increases the query complexity
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NMR Implementation

In an NMR implementation, the signal-to-noise ratio S
scales with the square-root of the number of experimental 
trials, Ne, ∴both algorithms have to be repeated at least N2

times, to achieve an adequate measurement sensitivity

The ensemble summing and search algorithms are more 
efficient than their quantum counterparts, using pure states, 
for an input size N given by N < S4/3 and N3/2log2N < S2, 
respectively

The best available signal-to-noise ratio in present NMR 
technology is S~104
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Comparison Table

The measurement sensitivity scaling, no. of experimental trials 
required in an NMR implementation, the single-run query complexity, 
and the overall query complexity for:
1. the ensemble summing algorithm we have proposed,
2. the ensemble search algorithm proposed by Bruschweiler, and 
3. Grover’s search algorithm, which provides the critical speedup in 

existing quantum algorithms
if the measurement sensitivity is inadequate i.e., for large N
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Advantages of 
Ensemble Computing

1. No need to maintain quantum coherences for ensemble algorithms, 
so they are easier to implement than their quantum counterparts

2. Ensemble algorithms may give an exponential speedup, for a number 
of function samples N < Nmax, determined by the measurement 
sensitivity. In this regime, the proposed summing algorithm requires 
only a single invocation of the function f, and the solution of the GOP 
requires a number of evaluations that scales logarithmically with the 
input size

3. Sheer numbers: an ensemble of molecules with twenty spins would 
generate an ensemble space of 106 states, the equivalent of having a 
million processors available for the classical computation. Each sub-
ensemble representing one of these states could be made up of a 
million identical molecules, to provide a high degree of fault tolerance, 
since the output signal is generated by all of these molecules
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