
CCA
Common Component Architecture

1HPCS Software Productivity Workshop15 January 2003 1HPCS Software Productivity Workshop15 January 2003

The Common Component
Architecture

A Component Environment for High
Performance Scientific Computing

David E. Bernholdt
Oak Ridge National Laboratory

In collaboration with the CCA Forum

bernholdtde@ornl.gov
Research supported by the Mathematics, Information and Computational Sciences Office,

Office of Advanced Scientific Computing Research, U.S. Dept. of Energy

CCA
Common Component Architecture

2HPCS Software Productivity Workshop15 January 2003

What is the CCA?

• A component model specifically designed for high-
performance scientific computing

• Supports both parallel and distributed applications
• Designed to be implementable without sacrificing

performance
• Minimalist approach makes it easier to componentize

existing software

• A tool to enhance the productivity of scientific
programmers
– Make the hard things easier, make some intractable things

tractable
– Not a magic bullet

CCA
Common Component Architecture

3HPCS Software Productivity Workshop15 January 2003

Origins of the CCA

• DOE Advanced Computational Software (ACTS)
program
– improve interoperability and reuse of major DOE software

libraries/tools
• Pair-wise (N2) approach to interoperability

– Not scalable
• CCA Forum

– Grassroots effort to improve on ACTS via component
approach

– Launched in 1998
– Standalone funding through DOE Scientific Discovery

through Advanced Computing (SciDAC) program in 2001

CCA
Common Component Architecture

4HPCS Software Productivity Workshop15 January 2003

SciDAC ISICs: An Aside

• Scientific Discovery through Advanced Computing
• Integrated Software Infrastructure Centers

• Creating a Scientific Computing Software
Infrastructure:
– Create a new generation of Scientific Simulation Codes that

take full advantage of the extraordinary computing
capabilities of terascale computers.

– Create the Mathematical and Computing Systems
Software to enable Scientific Simulation Codes to
effectively and efficiently use terascale computers.

– Create a Collaboratory Software Environment to enable
geographically-separated scientists to effectively work
together as a team to facilitate remote access to both
facilities and data.

CCA
Common Component Architecture

5HPCS Software Productivity Workshop15 January 2003

The SciDAC ISICs

• The Common Component Architecture (CCA)
• High-End Computer System Performance: Science

and Engineering (PERC)
• Scalable Systems Software Center (SSS)
• Scientific Data Management Center (SDM)
• Algorithmic and Software Framework for Applied

Partial Differential Equations (APDEC)
• Terascale Optimal PDE Simulations Center (TOPS)
• Terascale Simulation Tools and Technology Center

(TSTT)
• Programming Models (PModels)

CCA
Common Component Architecture

6HPCS Software Productivity Workshop15 January 2003

Some Productivity Issues in
Scientific Computing

• Reuse & Interoperability
– Few domains share/reuse code significantly
– Standardization of interfaces rare outside of linear algebra

tools

• Multiple languages
– Fortran still widely used
– C++, Java, scripting languages increasingly popular

• Size/complexity of code
– Including support of diverse parallel architectures

• Coupling of codes (multi-scale, multi-physics, etc.)
– Increasingly interesting as computer power increases
– Current practice: loose coupling (i.e. files), monolithic codes,

no generality of interfaces between codes

CCA
Common Component Architecture

7HPCS Software Productivity Workshop15 January 2003

Addressing Productivity Issues
with Components

• Reuse & Interoperability
– Component models support and promote R & I
– Interface standardization still very important, burden on user

• Multiple languages
– CCA developing Babel: Fortran, C, C++, Java, Python as

peers

• Size/complexity of code
– Component models promote a Lego block/”plug and play”

approach to large codes

• Coupling of codes (multi-scale, multi-physics, etc.)
– Natural extension of component-based applications

CCA
Common Component Architecture

8HPCS Software Productivity Workshop15 January 2003

CCA and Commodity Component
Environments

• “Commodity” environments include CORBA, COM,
Enterprise JavaBeans

• Minimize adoption overhead
– Make it easy to componentize legacy software

• Minimize performance impact
– Allow tightly-coupled in-process components

• Support for tightly-coupled parallel computing
– Commodity envs are focused on distributed
– Distributed is nice, but parallel is critical

• Support languages and types (and platforms) for
science
– Fortran, complex numbers, arrays, etc.

CCA
Common Component Architecture

9HPCS Software Productivity Workshop15 January 2003

• Port (aka interface)
– Procedural interface (not just dataflow!)
– Like C++ abst. virtual class, Java interface
– Uses/provides design pattern

• Component
– A unit of software deployment/reuse (i.e. has interesting functionality)
– Interacts with the outside world only through well-defined interfaces
– Implementation is opaque to the outside world

• Framework
– Holds components during application composition and execution
– Controls the “exchange” of interfaces between components (while ensuring

implementations remain hidden)
– Provides a small set of standard services to components

• CCA spec doesn’t specify a framework per se, so components can be constructed
to provide framework-like services

Basic CCA Terminology

Integrator

Result Fun

Linear
Function

Fun

CCA
Common Component Architecture

10HPCS Software Productivity Workshop15 January 2003

Existing Code → Components

• Component environments
rigorously enforce interfaces

• Can have several versions of
a component loaded into a
single application

• Component needs add’l
code to interact w/
framework
– Constructor and destructor

methods
– Tell framework what ports it

uses and provides
• Invoking methods on other

components requires slight
modification to “library” code

Integrator

Integrator library code
(slightly modified)

Framework interaction
code (new)

CCA
Common Component Architecture

11HPCS Software Productivity Workshop15 January 2003

Framework Mediates
Component Interactions

Integrator

Integrator code
getPort(Fun)

y=Fun(x)
releasePort(Fun)

Framework interaction code
constructor setServices destructor

CCA.Services
provides Result

uses Fun

LinearFunction

Function code
Fun(x) = 3 * x + 17

CCA.Services
provides Fun

Framework interaction code
constructor setServices destructor

1

2

1’

2’3

5

46

CCA
Common Component Architecture

12HPCS Software Productivity Workshop15 January 2003

Importance of Provides/Uses
Pattern for Ports

• Fences between components
– Components must declare both

what they provide and what
they use

– Components cannot interact
until ports are connected

– No mechanism to call anything
not part of a port

• Ports preserve high
performance direct connection
semantics…

• …While also allowing distributed
computing

Integrator Linear Fun
Provides/Uses

Port

Direct Connection

Integrator

Linear Fun
Uses
Port

Provides
Port

Network
Connection

CCA
Common Component Architecture

13HPCS Software Productivity Workshop15 January 2003

“Direct Connection” Maintains
Local Performance

• Components loaded into separate namespaces in the
same address space (process) from shared libraries

• getPort call returns a pointer to the port’s function table
• Calls between components equivalent to a C++ virtual

function call: lookup function location, invoke
• Cost equivalent of ~2.8 F77 or C function calls
• All this happens “automatically” – user just sees high

performance
• Description reflects Ccaffeine implementation, but similar

or identical mechanisms are in other direct connect fwks

CCA
Common Component Architecture

14HPCS Software Productivity Workshop15 January 2003

Framework Stays “Out of the
Way” of Component Parallelism

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

• Each process loaded with the
same set of components wired
the same way

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

MCMD/MPMD also supported

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

CCA
Common Component Architecture

15HPCS Software Productivity Workshop15 January 2003

Language Interoperability

• Existing language
interoperability
approaches are “point-
to-point” solutions

• Babel provides a unified
approach in which all
languages are
considered peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java

CCA
Common Component Architecture

16HPCS Software Productivity Workshop15 January 2003

Babel Features

Scientific Interface Def. Lang. (SIDL)
• Objects: Interfaces, Abstract Classes,

Concrete Classes
• Methods: all public; virtual, static, final
• Mode: in, out, inout (like CORBA)
• Types: bool, char, int, long, float,

double, fcomplex, dcomplex,
array<Type,Dimension>, enum,
interface, class

• Babel includes…
– Code generator
– Runtime (linked into CCA

framework)
• Implemented using C-based

internal object representation (IOR)
• Server side: wrap implementation

in Babel-generated code to allow
calling from any language via IOR

• Client side: Use SIDL interface
definition to generate stubs to call
from client language to IOR

• Strives to allow natural-looking
code in each supported language

SIDL
interface

description

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so

CCA
Common Component Architecture

17HPCS Software Productivity Workshop15 January 2003

CCA Research Thrusts and
Application Domains

• Frameworks
– Framework interoperability
– Language interoperability
– Deployment

• Scientific Components
– Data Components
– Linear Algebra
– Visualization & Steering
– …

• MxN Parallel Data
Redistribution
– Component-based
– Framework-based

• Application Outreach
– Education
– Best practices for use
– Chemistry, Climate

• Chemistry
• Combustion
• Climate Modeling
• Meshing Tools
• (PDE) Solvers
• Supernova simulation
• Accelerator simulation
• Fusion
• ASCI C-SAFE
• …

CCA
Common Component Architecture

18HPCS Software Productivity Workshop15 January 2003

Measuring the Success
of the CCA

• Increasing programmer productivity
– More reuse
– Development and use of domain-specific interfaces
– Cross-pollination between fields (i.e. combustion

components used in supernova simulation app)

• Serious high-performance component-based
applications
– i.e. CCA-based apps contending for Gordon Bell Awards,

achieving high sustained performance, etc.
– Shows that CCA doesn’t “get in the way”

• Researchers undertaking projects on a scale they
would not have previously considered
– And retaining their sanity

CCA
Common Component Architecture

19HPCS Software Productivity Workshop15 January 2003

Summary and Contacts
• CCA is a component environment for high performance

scientific computing
– Parallelism
– Performance
– Language support
– Ease of adoption

• Increasing programmer productivity is fundamental
goal

• Web site: http://www.cca-forum.org
• Rob Armstrong <rob@sandia.gov>

– CCA Forum head and SciDAC Center Lead PI

• David Bernholdt <bernholdtde@ornl.gov>
– co-PI, Lead for User Outreach and Applications Integration

