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ABSTRACT

A novel approach for calculating average cross sections in the unresolved resonance
region is proposed.  The methodology is based on the well-known probability table
technique.  Two new features are added to the probability table method in the way
the energy level spacing is sampled:  firstly, a constraint is imposed in the sampling
of the energy level spacing, that is, in addition to sampling from a Wigner
distribution the ∆3 statistic test of Mehta-Dyson is also added; secondly, instead of
generating a sequence of level spacing in a energy range (ladders) in the present
method the level of spacing is sampled around a reference energy. The methodology
was implemented and tested in a computer code named URR (Unresolved Resonance
Region).  It has also been incorporated in the codes RACER and AMPX.
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1.   INTRODUCTION

The formalism developed based on the R-matrix theory for treating the resonance in the resolved
resonance region cannot be utilized when the average resonance width is of the order or larger than
the average level spacing.  One cannot determine suitably the resonance parameter for an individual
resonance but rather resonance parameter, which would represent a cluster of resonance. For
instance, for the fissile and fertile nuclides the unresolved energy region starts in the keV region and
extends up to few hundreds keV.  An alternative for representing the cross section in the unresolved
region would be to use a pointwise tabulation.  However this approach would imply an
overwhelming amount of data storage.  The formalism mostly used for calculating cross sections in
the unresolved energy region is based on calculations done using average resonance parameters.
The calculation is expected to include the Doppler and the self-shielding effects, which are important
effects in the determination of reactor multiplication factors. The calculation of average resonance
parameters is based on the statistical distributions of the resonance parameters.  A computer code
named URR (Unresolved Resonance Region) [1] was developed to study the effect of various
assumptions on the statistical distributions of unresolved resonance parameters on the calculation
of self-shielding factors and self-indication ratios.  The code uses the Monte Carlo method to
generate  probability tables for calculating of average cross sections.  The self-shielding factors are
calculated using the Bondarenko formalism. All cross section calculations are done based on the
single-level Breit-Wigner approximation.  The calculations can be done at a specified energy,
temperature and cross section dilution.  The main characteristic of the URR code is that, contrary
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to existing probability table codes, the resonance energies are not sampled from consecutive points
on a statistical ladder, but rather pairs of resonance are generated around the energy of interest.  This
method has been implemented in the computer codes RACER [2,3] and AMPX [4].   In addition to
the modification in the sampling of the energy level spacing the resonance energies generated are
also compared with the corresponding energy levels on the ∆3 statistic test of Mehta-Dyson.

 2.  BRIEF OVERVIEW OF THE THEORETICAL DISTRIBUTIONS
OF THE RESONANCE PARAMETERS

2.1  LEVEL SPACING DISTRIBUTION LAW 

The spacing between two consecutive resonance energies for the same total angular momentum and
parity exhibits random behavior. For a set of n resonance energy levels, E1, E2,...,  En , where the
level spacing between two consecutive energies, Ek and Ek-1 , is  Dk, and the average level spacing
is <D>, the probability distribution function predicted by the Wigner law[5] is

where , and <D> is the average level spacing. The Wigner probability distributionx ' Dk /<D>
function has the following property:

The second moment of the Wigner distribution is given by

Equation (1) was the first mathematical prediction of the level spacing distribution to provide
excellent agreement with experimental results; it has triggered a series of investigations on the
subject of the statistical distribution of resonance parameters. Although other accurate level spacing
distributions have been proposed, Wigner’s law is the most widely used and is suitable for practical
applications.

2.2  RESONANCE WIDTH DISTRIBUTION LAW

Systematic measurements of the resonance widths show strong fluctuations among resonances of
the same angular momentum and parity. The definition of resonance width involves two other
quantities,  namely  the  reduced  widths, γλc , and the penetration factor, Pc , which  are  related
according to the equation
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where λ refers to the energy levels in the compound nucleus and c refers to the particle channel. One
should expect that the fluctuations are connected to either the reduced widths, γλc , or to the
penetration factors, Pc. However, it is improbable that the fluctuations are due to the penetration
factors since they are smooth functions of energy. Therefore, the observed fluctuations are caused
by the reduced widths, γλc; these, in turn, are related to the projection of the eigenfunctions of the
Hamiltonian of the compound nucleus on the nuclear surface. This projection involves an integration
of many uncorrelated contributions, positive and negative, over the high-dimensional phase space
of the compound nucleus. It then follows from the central limit theorem that the distributions of

have a Gaussian distribution with zero-mean. Therefore, the distribution function of the reducedγ2
λc

widths can be written as

where is the average value of .<γ2
λc> γ2

λ c

The probability distribution function of the resonance widths, Γλ ,can be derived from Eq. (3) as
follows: The statistical theorem states that if y is a variable that is the sum of squares of ν normally
distributed zero-mean independent variables, then y is distributed according to a χ2 distribution with
ν degrees of freedom. Therefore, the distribution of Γλ is

where , is the mathematical gamma function, and  is the average valuex ' Γλ /< Γ > G (ν /2 ) < Γ >
of the width taken over a given energy range.  For , Eq. (6) is the well known as the Porter-ν ' 1
Thomas[6] distribution law of the neutron width. It is generally accepted that fission is a few-
channel process, and that there are only a limited number of effectively open channels; 2 or 3
degrees of freedom are usually assumed in the fission width distribution. In the(ν ' 2 or ν ' 3)
neutron capture event, a large number of capture channels are opened; the gamma width distribution
is represented by a χ2 distribution with a large number of degrees of freedom ( ) ,whichν64
corresponds to a Dirac-delta function centered at . Γγ' < Γ >

The χ2 distribution function has the following property:
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The second moment of a χ2 distribution with degrees of freedom is given asν

2.3  DYSON AND MEHTA LONG-RANGE CORRELATION OF ∆3 STATISTICS TEST

The ∆3 statistics test, introduced by Dyson and Mehta, [7] provides a measure of the mean-square
deviation between the number of observed energy levels in the energy interval  to   and the bestEi Ef

fit to the straight line, as a function of energy, given as . Strictly speaking, the definitionaE % b
is

where N(E) is the corresponding cumulative number of energy levels as a function of energy.

The Dyson and Mehta ∆3 test predicts that the theoretical average value <∆3> is given as

with variance . Here n is the number of energy levels observed in the interval  toV∆3
'1.169/π4 Ei

.Ef

For practical applications, the coefficients a and b in Eq. (9) are determined according to the
following conditions:

and
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These conditions lead to the following equations:

 and

The following identities will be used in evaluating a and b:

and

If the energy levels in the range  to  are numbered from  to , then the followingEi Ef l ' &L l ' %L
relations also hold:
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and

The system of Eqs. (13) and (14) can be written as

and

in which the Greek symbols are defined as

and
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The solution for a and b is then 

and

Substituting these definitions into Eq. (9) leads to the expression for the ∆3 test:

or

where a and b are given by Eqs. (28) and (29), and γ1 and γ2 by Eqs. (26) and (27).

3. SAMPLING TECHNIQUE TO GENERATE RESONANCE ENERGY
AROUND THE REFERENCE ENERGY 

For a reference energy , as tabulated in the Evaluated Nuclear Data Files (ENDF), series ofE
resonance surrounding the reference energy is selected from the probability distribution

where  is the level spacing distribution law given in Eq. 1 (Wigner distribution).  The sampleW x( )
variable  is defined as the ratio between the level spacing  and the average level spacing x D <D>
( ).  The separation between the first two resonances around  is sampled from Eq.x D D= < >/ E
(32) and pair of resonances are assigned above and below  respectively as,  andE E sD+

.  The value  is a random number between 0 and 1 and is determined from a uniformE s D+ −( )1 s
distribution as
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Figure 1.  Comparisons of average cross sections calculated with the URR
computer code with experimental data for 235U.  Upper curve is the total cross
section, middle and bottom curves are respectively fission and capture cross
sections.

This procedure is repeated and more resonances are included around the reference energy.  The total
number of resonances (pairs of resonances) around the reference energy is arbitrary.  While this
method is very efficient for generation of the values needed for creating probability tables for cross
section calculations it was originally developed for  testing interference effects of the elastic channel
in the cross sections. The long range interference effect in the elastic channel may require large
numbers of  resonance pairs around the energy of interest for the determination of the average cross
sections.    The resonance energy sequence sample as described is also tested with the Dyson and
Mehta ∆3 test as indicated in Eqs. (3) and (4). The ∆3 test was successfully used in the evaluation
of the 235U cross sections.[8] It is also included in the computer code SAMDIST[9] which is used
for calculating statistical distribution of R-Matrix resonance parameters.

To test the unresolved resonance methodology in the computer code URR, comparisons of the
experimental average neutron cross section for 235U in the energy region from 3 keV to 20 keV is
shown is Figure 1.  The upper curve represents the total cross section measured by Harvey et al.[10],
whereas the middle and bottom curves are respectively the  fission and capture cross sections of
Weston et. al.[11] Solid curves are the average calculations with URR and the vertical lines are the
experimental data.  The average input data used in the calculations are of an ongoing 235U unresolved
evaluation done at ORNL.  The URR result are excellent.
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3.  CONCLUSIONS 

This work describe a novel approach for calculating average cross sections based on the probability
table method.  Two new features are established in the way the energy level spacing of the
resonances are sampled. The method has been implemented a computer code named URR and has
also been included in major computer codes, such as RACER and AMPX.  Comparisons of the
average cross sections calculated with URR for 235U are compared with experimental results and the
results are excellent.
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