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Recently, transport equations with multiplying 
boundary conditions (BC) has generated a lot of 
interest [3, 4, 7, 11, and references therein].  In 
general, multiplying BC lead to serious technical 
difficulties, since the combined effect of 
geometry and net production of particles at the 
boundaries results in the absence of overall 
control of the flux.  In slab geometry, if the 
velocities are bounded, the growth effect can be 
controlled.  Under these conditions, one can 
prove that the corresponding transport operator 
generates an exponentially bounded, positivity 
preserving evolution semigroup [3, 4, 7, 11]. 
 
The derivation of diffusion (hydrodynamics) 
from transport with either dissipative or 
conservative boundary conditions based on 
scaling arguments, asymptotic analysis, and/or 
functional analysis has a rather long history (see 
Refs. 1, 2, 5, 6, 8 (Section XXI-5), 9 (Section 
13), 10, 12 – 17, and references therein).  Here 
we report the first derivation of the diffusion 
limit for a model transport equation with 
multiplying boundary conditions (BC).  The 
derivation is rigorous in the sense that all formal 
operations are proven to be valid in specific 
functional frameworks.  Detailed proofs will be 
published elsewhere [15]. 
 
We consider monoenergetic transport in a slab of 
width 2a for the one-particle distribution 
function f depending on position, x, “velocity”, 
µ, and time, t.  The restitution coefficient at the 
slab’s surfaces is strictly greater than one, 
accounting for multiplying boundary conditions.  
 

Let  and γ β  be two positive constants.  We 
consider the limit, as ε  tends to 0, of the 
following transport problem: 

 

 

 

 

( )
11 2 2

1

+

2
0

1
, ,

2
       on (-a,a) (-1,1)

( , , ) (1 ) ( , , ), 0 (1)

( , , ) (1 ) ( , , ), 0

( , ,0) ( , ) (( , ) ( 1,1)).

f f
x t f f d f

t x

f a t f a t

f a t f a t

f x f x L a a

− − −ε ε
ε ε ε−

ε ε

ε ε

ε

∂ ∂ ′µ =−ε µ −ε +ε µ−γ∂ ∂
× ×

 − µ = +βε − −µ µ>
 −µ = +βε µ µ>
 µ = µ ∈ − × −


∫
¡

  

considered as an initial-boundary value problem 
in the space 2 (( , ) ( 1,1))L a a− × − . 
 
We note that in contradistinction with the 
conservative or dissipative BC, the scaling of the 
transport system above presents an additional 
difficulty introduced by the presence of 
multiplying BC. Indeed, in this case, the 
restitution coefficient at the surface has to be 
itself suitably scaled as indicated above. 
Otherwise, in the limit of infinite time, the 
multiplying effect of the boundaries would lead 
to uncontrollable growth of the solution.   
 
The main new result is contained in the 
following theorem [15]: 
 
Theorem 1 
Let γ  be an absorption coefficient such that 

2

2 2a
β βγ > +  and assume that the initial data 

0( , ),f x µ is sufficiently smooth. Then the solution 

εf  of the transport system (1) satisfies 

2 (( , ) ( 1,1))
,T

L a a
f f Meδ

ε − × −
− ≤ ε  for all ]0, ],∈t T  

where T>0, M and δ  are two positive constants 
independent of T and ε , and f is the solution of 
the diffusion problem: 
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considered as an initial-boundary value problem 
in 1( , )−H a a . 

 
We note that the Robin BC in system (2) are 
unstable, i.e., they describe incoming fluxes at 
the boundaries and, in principle, could yield 
solutions that grow exponentially in time. The 
proof of the Theorem is divided in three main 

steps [15].  First, we prove that the solution fε is 

exponentially bounded in time, uniformly in ε .  
The time behavior is controlled by adding the 
additional absorption term, fε−γ , with γ   

sufficiently large.  Second, we need to bound, 
uniformly in ,ε  the solution of the 
nonhomogeneous Milne problem with specularly 
reflecting boundary conditions that arises from 
the boundary layer.  The solvability of the Milne 
problem yields the BC for the diffusion problem 
(2).  Finally, the proof of the convergence of the 
transport solution, ,fε to the solution of the 

diffusion equation, ,f  is based on rigorous 

estimates of the various terms in the asymptotic 
expansion.  
 
The Theorem remains true when the boundary 
conditions are partially absorbing. In this case, 

0 and 0,β < γ = and thus we obtain a diffusive 

limit with stable Robin boundary condition. The 
proofs become much simpler because the 
original transport operator is dissipative when 
1 1.+ β ε <  
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