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Abstract

We describe a new method for computing a global principal component analysis (PCA) for
the purpose of dimension reduction in data distributed across several locations. We assume
that a virtual n x p (items x features) data matrix is distributed by blocks of rows (items),
where n > p and the distribution among s locations is determined by a given application. Our
approach is to perform local PCA on local data without any data movement and then move
and merge the local PCA results into a global PCA. The representation of local data by a few
local principal components greatly reduces data transfers with minimal degradation in accuracy.
We exploit the fact that most high-dimensional data have lower intrinsic dimensionality thus
allowing a good lower-dimensional representation. Existing methods that bring data to a central
location require O(np) data transfer even if only a few principal components are needed. In the
worst case, when an exact PCA is computed, our algorithm is min(O(np),0(sp?)). It is of O(sp)
data transfer complexity when intrinsic dimensionality is low or when an approximate solution
is sufficient. The ability to vary data transfers by controlling precision provides a great deal of
flexibility.

1 Introduction

Dimension reduction is a necessary step in the effective analysis of massive high-dimensional data
sets. It may be the main objective in the analysis for visualization of the high-dimensional data
or it may be an intermediate step that enables some other analysis such as clustering. Principal
component analysis (PCA) was first introduced by Pearson [8] in 1901 and later independently de-
veloped by Hotelling [3] in 1933, where the name principal components first appears. It is also known
as the Karhunen-Loeve procedure, eigenvector analysis, and empirical orthogonal functions. PCA
is probably the oldest and certainly the most popular technique for computing lower-dimensional
representations of multivariate data. The technique is linear in the sense that the components are
linear combinations of the original variables (features), but non-linearity in the data is preserved for
effective visualization. The technique can be presented as an iterative computation of the direction
of highest variation followed by projection onto the perpendicular hyperplane. This quickly provides
a few perpendicular directions that account for the majority of the variation in the data, giving a
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low dimensional representation of the data. A complete set of principal components can be viewed
as a rotation in the original variable space. See, for example, [5] for a comprehensive treatment
and history of principal component analysis. In this paper, we concentrate on the geometric and
dimension reduction properties of PCA as applied to the data and we do not use any distributional
assumptions about the data.

As Cluster Computing and the Grid are becoming the paradigms of current and future high-
performance computing, massive petascale data sets distributed over a network of clusters or a
Data Grid are the future in science and, particularly, simulation science. Even present massive
data sets stored in multiple files, multiple disks, or multiple tapes are often too large for centralized
processing. Some examples are medical records of distributed groups of individuals, sales records
of distributed stores on the same group of products, climate simulations based on different initial
and boundary conditions, genome characteristics for different organisms, etc. More applications are
becoming available as data standards are developed across distributed locations. Wegman [11, 12]
discusses the interaction of huge data sets and the limits of computational feasibility, concluding
that most current data analysis techniques break down on data sets beyond about 10 megabytes.
This is also true of principal component analysis.

It is natural to consider parallel and out-of-core methods for the eigenvalue or singular value
decomposition of massive matrices because this is the underlying computation. A recent survey
of parallel methods for spectral decomposition of a nonsymmetric matrix on distributed memory
processors [1] reports communication costs of roughly O(p?) per processor across several algorithms.
Further, the parallel methods are tightly coupled, requiring a level of synchronization and a reason-
ably even data distribution between the local computations. Out-of-core methods by their nature
transfer the entire matrix because all matrix rows need to be considered. An efficient out-of-core
SVD algorithm was recently reported in [9]. A distributed algorithm for data distributed by blocks
of columns (variables) is reported in the context of clustering in [6]. We present an algorithm for
the complementary case of data distributed by blocks of rows.

Because our goal is dimension reduction, a form of approximation by a lower-dimensional object,
we can begin with local dimension reduction. In contrast to the “exact” computation performed
by the parallel and out-of-core methods, we can distribute approximation itself and trade a small
amount of approximation for a large amount of data transfer and synchronization. An approximation
approach is also applied in [6] for data distributed by blocks of columns. The fact that most high-
dimensional data is of much lower intrinsic dimensionality [10] is the concept that makes such an
approach practical. The remainder of this paper is organized as follows. We begin in Section 2
with some notation for PCA. Section 3 presents the concepts needed for merging local PCA into a
global PCA. Section 4 presents the formal algorithm. Performance on synthetic data is discussed in
Section 5.

2 Notation and Background for Principal Components Anal-
ysis
Let X be an n x p data matrix, whose rows are the observations (items) and columns are the variables

(features). For simplicity of exposition and because our algorithm is most effective in this case, we
assume that n > p. The data covariance matrix S is given by

nS = XTI —n'117)X = XTX — n'xx7, (1)



where ® = n~ 117X is the vector of p column means and 1 is a vector of all ones. Note that the
column-centering operator (I—n"'117) is idempotent. Often n — 1 is used instead of n in (1) when
the data are a sample from some larger population and properties of the population are of interest.
The principal component analysis is given by the eigenvalue decomposition [2] of

nS = UA*UT, (2)

where U is the matrix of principal component coefficients, and A? = diag(A\?, A3, .. .7)\2) is the
diagonal matrix of eigenvalues ordered from largest to smallest. The same information can be
obtained from the related singular value decomposition of the column-centered data matrix,

(I-n"'117)X = VAU, (3)

without explicitly forming the covariance matrix. B
Taking U as the first k columns of U corresponding to A? = diag()\?,.. .,)\i), the largest k
eigenvalues, gives _
Z=(1-nt117)xXU" (4)

as the best k-dimensional representation of the original column-centered p-dimensional data in the
linear least-squares sense [5].
The quality of this approximation is given by the ratio

i1 A7

o =
which is the proportion of total variation in the original p variables explained by the k& principal
components.

Our purpose in this paper is to develop an algorithm for global PCA of a data matrix that is
distributed among s locations as

: (6)

where X; are n; X p matrices with n = Zle n;. The allocation of rows to locations depends on the
application and need not be balanced.

3 Merging Distributed PCA

The crossproduct of the data matrix can be expressed as a sum of row outer products. In [7], within
a parallel computing context, we note that a row partition of the data matrix (6) induces a partition
on this sum of row outer products. In a similar fashion, here we first show how the X(I—n~"1117)X
matrix can be partitioned into a sum of the local X7 (I —n; *117)X; matrices and a term involving
the local column means.



Note that the idempotent centering operator in (1) that we shall denote by C can be written as
a sum of two idempotent centering operators

C = [I-nt117] (7)
ny 117 0 0
0 ny 11t ... 0
= |I- : : +
0 0 R i b K
nyt117 0 0
0 T B 0
. . ) —n 1117
i 0 0 SRR U b
= Cw+cb

The first operator computes differences from local column means (within locations) and the second
operator computes local column mean differences from global column means (between locations).
Also note that C,,Cy, = 0, so that the centering operators are mutually orthogonal. In terms of the
covariance matrix we have

nS = XCX
= XC,X+ XCpX

= Y X[(I-n"117)X; + XC,X
i=1

S
= ) nS; +XCX (8)
i=1
So the global covariance is partitioned into a weighted sum of local covariance and a ”between”

locations covariance computed from the local means.
Using the partition (8) we can insert the local PCA

nS =Y UATUT + > ni(x; — %) (% —x)". (9)
=1 =1

In order to reduce the amount of data transmitted to a central location, we can use only k; local
eigenvectors corresponding to the largest k; eignevalues that achieve a given quality of approximation
as in (4). Letting R; be the required proportion of variation at location 4

nS =Y UAU] +> ni(xi — %)(x; —x)” (10)
=1 =1

where X; is a vector of the local column means and each szfxfﬁf decomposition is based on k;
largest local eigenvalues. The k; need not be the same at each location and this depends on R;.
We can either fix k; = k, letting R; vary between locations or we can fix R; = R and let k; vary



between locations. For a fixed bandwidth of transmission we use the former and for a fixed quality
of approximation we use the latter.

Given a reconstructed nS at a central location we can proceed with computing the global principal
components as we outline in the next section.

Because of linear optimality properties of principal components, this algorithm combines optimal
(for a fixed k;) linear approximations of local data covariance. Although local optimality is not
sufficient for global optimality, we expect to be close for the following reasons. First, if locations are
very homogeneous, global principal components are close to local principal components thus close
to optimal results are obtained. If locations are very heterogeneous, the majority of the variation
is carried in the second sum of equation (10), which is a measure of location heterogeneity and is
computed exactly.

4 The Distributed Principal Component Algorithm

In this section, we discuss the algorithm and some computational issues. The algorithm begins by
setting two parameters o and k to guide the approximation. Either the number of local principal
components is at least k or the minimum proportion of variation explained locally is at least a.. The
algorithm satisfies both requirements, so if only one needs to be satisfied, the other is set to zero.
The descriptive statistics computed in each location are (n;, «;, ki, X;, A;, U;). where

n; is the number of observations in the " location.

a; is the total variance of the i*" data set.

k; is the number of principal components selected from the i** data set.
X, is the vector of column means of the i*"* data set.

A; is a diagonal matrix containing k; largest eigenvalues in descending order (only the diagonal
entries are stored).

U, is a matrix whose columns are the k; eigenvectors corresponding to the k; eigenvalues in A;.

The Algorithm: DPCA
1. Set and send local requirements a and k to each location.
2. Compute descriptive statistics (n;, a;, ki, X;, ./NXZ-, I~L) at each location ¢ = 1,...,s, such
y > o and k; > k.

Transmit descriptive statistics to central location when complete.

that

Compute nS according to equation (10) from the collective descriptive statistics.

Compute global principal components nS = UDU”.

S oo

Set ay and k4 requirements for global principal components.

k.
. > M d; _
7. Transmit at least the first k; columns of U as U such that Zifl J > a4 and also bx

j=1"
back to each location.



8. Compute Z; = (X;— 1)_<T)I]' as the ky-dimensional representation of the globally column-
centered p-dimensional data.

Steps (1) and (6) determine the quality of the approximation. The local parameters a and k
determine the quality of local approximation and k, controls the global approximation. For a single
parameter control, one may set k; = k and o = 0 for a fixed number of principal components. A

Zfil Zl > a

variation based single parameter control may be «, k = 0, and k4 such that &3

The control parameter choices may depend on expectations about the daé; distribution. For
example if each location describes a very different population and has a distinct mean X;, then
low quality approximation may be good enough, because a large amount of global variability is
in the differences between locations that is carried in the mean vectors. Another reason for low
quality approximation may be local data privacy issues. On the other hand, if we expect data to
be distributed randomly among locations, then more local principal components may be needed to
capture sufficient global variability.

Numerical issues in computing a covariance matrix can arise when rows of the data matrix have
widely different scales. The distributed algorithm is, in fact, better in this sense than a centralized
algorithm because groups of rows are centered separately. Although this improvement would be
apparent only if we compute an exact global PCA communicating the full local principal component
decomposition.

An algorithm that begins by centralizing all the data requires O(np) data transfer even if only
a few principal components are needed. This is simply because all the data must be transferred if
no local computation is done. A simple minded alternative might be to compute the local sufficient
statistics, which include the local covariance matrices and means, and transfer those to a central
location for the PCA computation. This approach requires O(sp?) data transfer, which can be larger
than O(np) if n; < p in a significant proportion of the sites. Our algorithm requires O(p>_7_, k;)
data transfer. Note that k; < min(n;,p). This is because at most min(p, n;) eigenvalues are non-zero.
In the worst case, when an exact PCA is required, O(p Y ;_, k;) < min(O(np),0(sp?)). So that our
worst case is the better of the centralized approach and the sufficient statistics approach. When a
fast approximate solution is required, the k; are a small constant and our algorithm requires O(sp)
data transfers. This is also often the case for a precise solution because a low intrinsic dimensionality
exists in most high-dimensional data settings [10]. The ability to vary the data transfers by varying
the required precision provides a great deal of flexibility.

5 Numerical Experiments

Two experiments on synthetic data are conducted to show the effectiveness of the algorithm. In
both experiments, we distribute the data randomly among locations giving homogeneous local mean
vectors. This is in fact the most unfavorable case because heterogeneous location mean vectors carry
more global variability than homogeneous mean vectors. This puts the highest burden on the local
principal component approximation in equation (10) because little variability is contained between
the local means .

Our implementation of the distributed algorithm is in R [4]. It currently runs on one processor
but operates on distributed data sets as needed to assess the accuracy and data transfer performance
of the algorithm. We do not report execution times as these are ultimately dependent on processors
used in a distributed situation and on the distribution balance of the data.
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Figure 1: Scree plot showing individual and cumulative component variance.

5.1 Generating the synthetic data

The data used in both experiments are generated in the same way: a d-dimensional Gaussian data
set in p-dimensional space (d < p) contaminated with some p-dimensional Gaussian noise. More
formally, the data are generated by the following steps:

1. Generate d-dimensional data A = {a;; }nxq With a;; S N(0,1).

2. X = AH” + E, where H is any p x d matrix whose columns are orthonormal vectors, and
the elements of E are identically indepently distributed (iid) as N(0,0?) (normal distribution
with mean 0 and variance o2). Here, for simplicity, we let H = {h;;)},xa, where

(1 ifi=j
hij { 0 otherwise (11)

3. The data X are divided into s groups evenly. If n cannot be divided by s, let the first nmods
groups contain n/s + 1 observations each, and the remaining groups contain n/s obseravtions
each.

In two experiments that follow, we take n = 5,000, p = 20, d = 2, and ¢ = 0.2. With these
parameters, the theoretical covariance matrix has two eigenvalues of 1.04 and eighteen eigenvalues
of 0.04. This is confirmed by a scree plot of a realization of this matrix in Figure 5.1. Linear
approximations beyond the first two components that represent the intrinsic dimensionality of the
data are difficult because the noise is spherical. In Experiment II, in addition to ¢ = 0.2, we also
provide results for increased noise o = 0.5.

5.2 Experiment I

Here, we fix the proportion of variation explained by the distributed principal components (DPC)
or the central principal components (CPC) to 0.8. A threshold of variation explained by local PCA



Table 1: Comparison of DPC and CPC for a Fixed Percentage of Variation, 10 Simulations
each (a =0.8)

s 1 5 10 20 50 100 200 400 500 1000

koo | TREOD 1.000 1.167 1.181 1.283 1.314 1.333 1.333 1.333 1.333 1.183
s.d. .000 .000 .054 .081 .060 .000 .000 .000 .000 .053

T, | mean .003 .014 .027 .051 113 197 323 494 .558 797
s.d. .000 .000 .000 .000 .001 .002 .003 .002 .004 .002

da mean .200 .199 .199 .198 197 .196 .193 .190 .189 179
s.d. .001 .001 .002 .001 .002 .002 .002 .001 .002 .001

is specified as a = v/0.8. Note that 0.8 requires roughly five principal components as can be seen in
Fig. 5.1. This extracts principal components from the difficult 20-dimensional spherical noise region
beyond the first two components. For this reason, and because of the homogeneous distribution
among locations, we consider this experiment to be near the worst case that could be encountered
in real data. We run 10 simulations for each value of s. The means and standard deviations (s.d.)
of kge, The, da, R are shown in Table 1, where

1. k4e is the ratio of number of DPC and that of CPC defined by

kq
kge = — 12
- (12

where k, is the number of DPC and k. is the number of CPC.
2. T, is the ratio of the transmission costs defined by

T
Toe = TZ (13)

where T, = (D" k;)(p+ 1) + s(p+ 3) and T. = np.

3. d, is the relative Lo distance between the data approximated by DPC and the original data
X defined by

I(T—n~11")(X - X)||2
I(T-n=111)X][l>

d, = (14)

where X = ZU is the dimension reduced data represented in the original p-dimensional space.

Note that s =1 is the CPC case.

In Table 1, the proportion of variation explained by the distributed principal components (DPC)
or the central principal components (CPC) is fixed to no less than 0.8. Based on the construction
of DPC, the number of DPC is no less than that of CPC, and the ratio k. reflects the goodness
of the approximation. The smaller k.. implies better DPC. From the table, k.. is small when s is
small or large, and it is large for the middle values of k. This is reasonable. When s is small, the
number of observations in each data set is relatively large and each local covariance matrix is close
to the global covariance matrix by the Law of Large Numbers. When s is large, the information can
be well summarized by the local means, which are transmitted exactly. Figure 2 plots k,. and T,
versus s. Note that a maximum 33% increase in the number of components means that we usually
require one or two more components.
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Table 2: Comparison of DPC and CPC for a Fixed Number of Components, 10 Simula-
tions each (n = 5,000, p =20, k=2, 0 =0.2)

s 1 5 10 20 50 100 200 400 500 1000
V. | mean 1000 1.000 1.000 1000 1000 1000 999 998 997 991
sd.  .000 .000 .000 .000 .000 0.000 .000 .000 .000 .001
7, | meam 002 007 014 027 059 107 189 325 .390 662
sd.  .000 000 .000 .000 .00l 0.001 .002 .002 .004 .002
4, | mean 205 204 205 206 205 206 205 .204 206 205
sd. 002 002 .002 .001 .002 .003 .002 .002 .002 .003
o
=]
g,
=
&
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Figure 3: DPC Variation Explained relative to CPC and DPC Transmission Costs relative to CPC as a
function of s for a fixed number of components. (o = 0.2)

5.3 Experiment I1

In the second experiment, the number of DPC and CPC components are both fixed at k = 2. The
proportion of variation explained by local PCA is fixed at 0.90. Effectively, we require that the local
results are more precise than the global requirement. We run 10 simulations to see the effect of s
on the performance of distributed principal component analysis (DPC). The means and standard
errors (s.e.) of Ve, Tae, dq, de are shown in Table 2, where V. is the ratio of the variation explained
by the first £ DPC over the variation explained by the first £ CPC, and the rest are defined as in
Section 5.2.

From Table 2 and Figure 3, V.. is uniformly decreasing as s increases and is close to 1 across all
s. It implies that the DPC is very close to CPC. In order to highlight the difference between DPC
and CPC, we increase the noise (02). The results are shown in Table 3. After comparing Table 2
and 3, we find that DPC losses slightly increase under larger noise. However, the losses are still very
small.
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Table 3: Comparison of DPC and CPC for a Fixed Number of Components, 10 Simula-
tions each (o = 0.5)

s 1 5 10 20 50 100 200 400 500 1000

Ve | mean 1.000 1.000 0.999 .999 .997 994 989 982 979 977
s.d. .000 .000 .000 .000 .000 0.000 .001 .000 .000 .001

T, | mean .003 .016 .031  .059 .131 230 372 550 .614  .837
s.d. .000 .000 .000  .000 .001 0.001 .002 .002 .001 .002

da mean 463 467 466 465  .466 468 466 467  .467 467
s.d. .005 .004 .005 .004 .003 .005 .005 .004 .004 .003

6 Summary

We present an algorithm for computing approximate principal component analysis of data distributed
across several locations. Our algorithm does not require that the local data is transferred to a central
location. Only an approximation of each local covariance matrix along with a vector of means is
centralized.

The basis of our algorithm is that the global data covariance can be partitioned into a sum
of ?within” locations covariances and a ”between” locations covariance (8). We approximate the
”within” local covariances with principal components and compute the ”between” covariance exactly
(10). Each local approximation carries the linear optimality properties of principal components.

The advantages of our approach compared to out of core and parallel approaches are twofold.
First, our algorithm requires substantially lower data transmission rates, O(sp) compared to O(np),
where n is the total number of items across all locations, p is the number of features, and s is the
number of data locations. Clearly, data sets with many items will benefit the most. Second, because
only a representation based on the first two moments of the data is centralized (the vector of means
and an approximate covariance matrix), local control remains over local data and data privacy issues
are addressed.

Our numerical experiments show that when principal components provide a good data rep-
resentation, our distributed approximation suffers almost no losses in accuracy. When principal
components do not provide a good representation, as in the case of approximating high-dimensional
spherical noise, the distributed approximation required up to 33% more components than a central-
ized algorithm for the same quality of approximation. However, data transfers are reduced in both
cases.
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