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Abstract. As the technology for high-speed networks has evolved over
the last decade, the interconnection of commodity computers (e.g., PCs
and workstations) at gigabit rates has become a reality. However, the
improved performance of high-speed networks has not been matched so
far by a proportional improvement in the ability of the TCP/IP pro-
tocol stack. As a result the Virtual Interface Architecture (VIA) was
developed to remedy this situation by providing a lightweight commu-
nication protocol that bypasses operating system interaction, providing
low latency and high bandwidth communications for cluster computing.
In this paper, we evaluate and compare the performance characteristics
of both hardware (Giganet) and software (M-VIA) implementations of
VIA. In particular, we focus on the performance of the VIA send/receive
synchronization mechanism on both uniprocessor and dual processor sys-
tems. The tests were conducted on a Linux cluster of PCs connected by
a Gigabit Ethernet network. The performance statistics were collected
using a local version of NetPIPE adapted for VIA.

1 Introduction

The advent of high performance microprocessors coupled with high-speed inter-
connects has made clusters an attractive platform for parallel and distributed
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computing. There are many research institutes and academic departments in-
volved in building low cost Beowulf-class clusters to fulfill their computing needs
at a fraction of the price of a traditional mainframe or supercomputer.

Interconnecting the nodes in a cluster requires network hardware and soft-
ware that is scalable, reliable, and provides high bandwidth and low latency
communications. Gigabit Ethernet [3], among the other high-speed networks,
can in principle provide the required performance needed for cluster computing.
However, the improved performance of Gigabit Ethernet is not realized at the
application layer of the network. This is due primarily to the overheads incurred
in communicating between processor, memory, and I/O subsystems that are di-
rectly connected to a network. In particular, this communication overhead is
caused by the time accumulated when messages move through different layers
of the TCP/IP stack in the operating system. The source of these overheads
is multiple memory copies and use of the operating system for receiving and
transmission of packets. In the past, the end-to-end Internet protocol overhead
did not significantly contribute to the poor network performance since the la-
tency was primarily dominated by the speed of the underlying network links.
However, Gigabit Ethernet technologies coupled with high-speed processors now
mean that the overhead of the Internet protocol stack is the dominant bottleneck
in the performance of this technology.

Many research projects have been proposed to address network performance
issues. Examples of these projects include U-Net [11], Fast Message [9], and
Active Message[10]. More recently, the Virtual Interface Architecture (VIA) [1]
has been developed to standardize efforts in this area. VIA defines mechanisms
that will bypass the intervention of the operating system layers and avoid excess
data copying during sending and receiving of packets. This effectively reduces
latency and lowers the impact on bandwidth. Since the introduction of VIA,
several software and hardware implementations of VIA have become available.
Examples include Giganet [4], ServerNet-II [2], Myrinet [5], and M-VIA [6].

This paper evaluates and compares the performance of both hardware and
software implementations of VIA technology on a Linux-based cluster connected
by a Gigabit Ethernet Network. The layout of this paper is as follows: Section 2
gives an overview of the VIA technology. Section 3 gives an overview of NetPIPE
and the implementation of NetPIPE-VIA. Section 4 presents the test environ-
ments used. Section 5 discusses the results from our performance tests. Finally,
the conclusions and future work are presented in Section 6.

2 VI Architecture Overview

The VI Architecture is an industry trade effort to provide low latency and high
bandwidth message-passing support over a System Area Network (SAN). Fig-
ure 1 illustrates the VIA design. The VIA design consists of two major compo-
nents: the VI Provider and the VI Consumer.

The VI Provider is a combination of a media dependent VI Network Interface
Card (NIC) and the VI Kernel Agent. The VI Kernel Agent is a software compo-
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Fig. 1. VI Architecture

nent that includes the device driver for the VI NIC and a set of kernel routines
needed to perform privileged operations such as connection management and
memory registration on behalf of applications.

The VI Consumer is an application process that communicates using the VI
Provider Library (VIPL) primitives. The software component that implement
the VIPL is known as the VI User Agent. It provides a protected and directly
accessible interface, know as Virtual Interface (VI), to the network interface.
Each VI represents a communication endpoint and pairs of such VIs can be
connected to form a communication channel for bi-directional point-to-point
data transfer. A VI Consumer can have multiple VIs.

Each VI is associated with a send queue and a receive queue (also known
as work queue). For data transmission, the sender and the receiver post packet
descriptors to its work queue. A mechanism known as a doorbell is used to notify
the VI Kernel Agent that a descriptor has been added to a work queue. A
doorbell is a control register associated with each work queue which is mapped
into the virtual address space of the application process that owns the VI.

A VI Consumer must register the memory region of its packet descriptors
and data buffers with the VI Kernel Agent before being used for communication.
Memory registration takes the expensive operations of mapping memory and
doing virtual to physical translation out of the critical performance path. As a
consequence, this eliminates the need for copying data from the user buffer space
to the kernel buffer space, which is typically used in traditional communication
models.

The VI Architecture supports send/receive and remote direct memory access
(RDMA) read/write types of data movements. The current revision of the VI
architecture specification defines the semantics of a RDMA Read operation but
does not require that the network interface support it.



3 NetPIPE Benchmark Overview

NetPIPE [8] is a network protocol independent performance evaluation tool de-
veloped by Ames Laboratory. The design of NetPIPE consists of the protocol
independent driver, and a set of well defined communication APIs.

The device independent driver implements a ping-pong like program which
increases the transfer block size from a single byte to large blocks until transmis-
sion time exceeds 1 second. Specifically, for each block size c, three measurements
are taken for block sizes c − p bytes, c bytes and c + p bytes, where p is a per-
turbation parameter with a default value of 3. This allows examination of block
sizes that are possibly slightly smaller or larger than an internal network buffer.

The communication APIs implement the protocol specific module. Currently,
NetPIPE supports TCP, PVM, and MPI communication protocols. For our per-
formance evaluation, we implemented a VIA communication protocol module
for NetPIPE.

3.1 Implementation of NetPIPE-VIA

The set of NetPIPE communication APIs needed for the protocol specific mod-
ule includes those for establishing a connection, closing a connection, sending
and receiving data, and performing synchronization. We implemented all the
communication APIs using the VIPL library.

To keep the implementation simple, NetPIPE-VIA creates a pair of VI end-
points per connection. A fixed number of send and receive packet descriptors
are pre-allocated and each descriptor has a fixed size of registered (pinned)
memory, which is equal to the maximum data buffer size supported by the VI
Provider. The descriptors are chained together to form a ring. To send a mes-
sage, NetPIPE-VIA gets a descriptor from the send ring and posts the descriptor
to the send queue. After the completion of a send operation, the descriptor is
inserted back into the ring. VIA requires packet descriptors to be posted on the
receive queue before any message arrives. Otherwise, the message will be lost.
Therefore, NetPIPE-VIA pre-posts all the receive descriptors before the recep-
tion of message occurs. Whenever a packet arrives, it gets a descriptor out of the
receive queue, processes the packet, and posts the descriptor back to the receive
queue again.

For each measurement, the protocol independent driver determines the size
of the data block either linearly or exponentially depending on a user speci-
fied command line option. Hence, the memory buffer for a data block of size
c is dynamically allocated at run time. In order to achieve zero-copying and
avoid extra overhead of pining and unpining the memory buffer for each data
block, NetPIPE-VIA pre-allocates and pre-registers a pool of memory buffers.
All memory requirements of the independent protocol driver are satisfied from
this memory pool. This also keeps the memory management in NetPIPE-VIA
simple.

When transmitting a large data block, the message will be fragmented in or-
der to fit into a descriptor’s data segment. This implies that multiple descriptors



are needed to either transmit or receive large messages. Consequently, flow con-
trol is required to prevent the sender from overflowing the receiver’s pre-posted
receive descriptors. NetPIPE-VIA implements a simple flow control scheme. On
the sender side, it continues to transmit until either the entire data block c
is sent or the number of sends reach the maximum number of pre-posted de-
scriptors of the receiver. For the latter case, the sender waits for a “continue”
message from the receiver before sending more packets. On the receiver side, it
continues to receive packets until either the entire data block c is received or it
reaches the maximum number of pre-posted descriptors. If the receiver runs out
of pre-posted descriptors, it stops receiving and waits for all receive requests to
complete. Then, it sends a “continue” message to inform the sender to continue
to send more packets.

4 Testing Environment

The testing environment for collecting VIA performance data was a cluster of 32
dual processor Pentium III 450MHz PCs using the Intel 440BX chipset. The PCs
were equipped with 256MB RAM with 100MHz (PC100) SD-RAM bus. The PCs
were connected together through a Foundry FastIron 10/100/1000Mbps switch
using SysKonnect SK-9821 NICs. Four of these PCs were also connected to-
gether through a Giganet cLAN5000 switch using cLAN1000 NICs. In addition,
two PCs were connected back to back using Packet Engine GNIC-II NICs. All
the NICs were installed in 33MHz/32bit PCI slots. The PCs were running the
Red Hat 6.2 distribution with the 2.2.16 Linux kernel. For testing the software
implementations of VIA, M-VIA v1.0 was installed. All performance results were
collected using the NetPIPE-VIA benchmark tool.

5 Performance Results

In VIA terminology, the term synchronization is used to refer to the process
by which a VI Consumer detects, or is notified of, the completion of a commu-
nication request. For each of the Gigabit Ethernet NIC mentioned earlier, we
evaluated the performance characteristics of the polling and blocking synchro-
nization schemes for a uniprocessor system and a dual processor system. Here,
we present and compare the point-to-point latency and throughput performance
of both hardware and software implementation of VIA. For completeness, we
have also included the TCP performance5.

5.1 VIA Latency Discussion

Table 1 summarizes the latency performance for the various NICs on uniprocessor
and dual processor systems.
5 The LAN emulation driver lanevi was used to collect TCP performance for the cLAN

1000 NIC



Table 1. Latency Performance in µ secs

Uni-Processor Dual Processor
Socket VI Socket VI

Read/Write Send/Recv Read/Write Send/Recv
NIC TCP Poll Block TCP Poll Block

CLAN 58 9 9 116 10 45
GNIC-II 57 19 19 94 42 42
SK-9821 63 29 29 101 51 53

One obvious observation is that the TCP latency, on both the uniprocessor
system and the dual processor system, is at least 50% higher than the VIA
latency regardless of which synchronization schemes are used. This highlights
that VIA can, in practice, deliver the low latency needed for communication
intensive applications.

In general, the latency of hardware implemented VIA (cLAN) is at least 40%
lower than software implemented VIA (GNIC-II and SK-9821). With hardware
support, the VI Kernel agent is able to offload much of the processing to the
network card resulting in lower processing overhead.

For the uniprocessor system, the latency for both synchronization schemes
is almost identical for all NICs. For a dual processor system, the latency using
the polling scheme is slightly less than the blocking scheme. However, it is more
obvious for the cLAN NIC. The primary cause for such a difference is due to
the implementation of the doorbell mechanism in the VI Kernel agent. cLAN’s
doorbell mechanism is supported directly in hardware as a true memory mapped
doorbell. cLAN’s VIPL uses the ioctl system call to provide the time-sensitive
services. On the contrary, M-VIA’s VIPL uses fast traps system calls to emu-
late the doorbell mechanism. In Linux kernel 2.2.16, there is a big variance when
timing both the ioctl and fast trap calls. However, when we take the average
of the overhead for each system call, it yields lower overhead per wait operation
on a dual-processor system then on a uniprocessor system. However, this effect
is less on a uniprocessor system resulting in little or no difference in latency.

For M-VIA, the latency for both VIA synchronization schemes on the dual
processors system is higher when compared to the uniprocessor system. This is
because M-VIA uses the Linux spinlock primitives to protect the data structure
of each VI. For an SMP, the overhead of using spinlock primitives to perform
mutual exclusion across CPUs is higher than in the uniprocessor case. This
overhead comes from disabling interrupts when making spinlock calls to lock
the VI data structure. Although it is expensive, the spinlock mechanism is
safe as compared to other implementations. On the other hand, the latency for
cLAN on the dual processors system is only about 1µ second higher than the
uniprocessor system. This is because cLAN uses the Linux pthread primitives
to provide protected access to the VI data structure. It is relatively cheap in
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Fig. 2. cLAN: Send/Recv Mode

terms of CPU cost and does not require the calling thread to disable interrupts.

5.2 VIA Throughput Discussion

Figure 2 shows the communication performance using cLAN. For a uniprocessor
system, cLAN achieves maximum throughput of approximately 362Mbps for
TCP and 788Mbps for both polling and blocking synchronization schemes. For
a dual processor system, cLAN achieves maximum throughput of approximately
339Mbps, 738Mbps, and 768Mbps for TCP, the polling scheme, and the blocking
scheme, respectively. The advantage of using the polling scheme is more obvious
under the dual processor system. Recall that cLAN uses a software layer to
emulate TCP transmission. The actual transmission is still using the cLAN VI
Kernel agent and the VIA-aware hardware. One would expect TCP to perform
well in such a configuration. However, we observe that there were many severe
dropouts in the cLAN TCP graph especially for larger data blocks. This could
be interpreted as the overhead involved in maintaining the VI’s work queues,
the costs of a memory copy from user’s data buffer to the packet descriptor’s
data buffer, and the overhead of fragmenting the data block to 1500 bytes (the
default maximum transmission unit (MTU) specified in the Ethernet standard
802.3) by the cLAN’s TCP emulated device driver (lanevi).

Figure 3 shows the communication performance using the GNIC-II. For a uni-
processor system, the GNIC-II achieves maximum throughput of approximately
258Mbps for TCP and 510Mbps for both polling and blocking synchronization
scheme. For a dual processor system, the GNIC-II achieves maximum through-
put of approximately 261Mbps for TCP and 273Mbps for the polling scheme
and blocking scheme, respectively. In the dual processor system, the VIA per-
formance drops drastically whereas the performance of TCP increases slightly.
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Fig. 3. GNIC-II: Send/Recv Mode

Figure 4 shows the communication performance using the SK-9821 NICs.
For the uniprocessor system, SK-9821 achieves maximum throughput of approx-
imately 296Mbps for TCP and 520Mbps for both polling and blocking syn-
chronization schemes. For dual processors system, SK-9821 achieves maximum
throughput of approximately 260Mbps for TCP and 269Mbps for polling scheme
and blocking schemes, respectively.

The poor VIA throughput performance on the dual processor system is re-
lated to the implementation of the doorbell mechanism in M-VIA as explained
above. In general, the throughput performance using the polling mechanism is
slightly better (about 1− 3%) than the blocking mechanism for all NICs under
both systems. However, this effect can only be observed when the data block
size is large, e.g > 4Mbytes.

5.3 Effect of Hardware MTU on Throughput Performance

In M-VIA, the GNIC-II and SysKonnect NICs hardware MTU is 1500 bytes.
This because the Gigabit Ethernet standard still limits the MTU to 1500 bytes.
In [7], it has been observed that larger MTU improves TCP throughput.

To confirm that hardware MTU will also improve VIA performance, we tested
the SK-9821 NIC using an MTU of 9000 bytes. Since the Foundry switch does
not support MTU greater than 1500 bytes, we connected two PCs back to back
using the SK-9821 NICs. Figure 5 shows the VIA communication performance
as well as the TCP performance. For the uniprocessor system, the SK-9821
achieved maximum TCP throughput of approximately 574Mbps with latency
of 54µ secs. The M-VIA performance attains maximum throughput of roughly
632Mbps using the blocking scheme and 648Mbps using polling synchronization
scheme. The latency for both schemes is approximately 24µ secs. This represents
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Fig. 4. SK-9821: Send/Recv Mode
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Fig. 5. SK-9821: Send/Recv Mode with MTU=9000

an increase by a factor of 2 for TCP throughput and approximately a 20%
increase for the VIA throughput when compared to using MTU of 1500 bytes.
Moreover, the latency has also decreased.

For the dual processors system, the SK-9821 achieves a maximum TCP
throughput of approximately 504Mbps with latency of 93µ secs. The M-VIA
maximum throughput is approximately 535Mbps for both the polling and block-
ing schemes. The latency of the polling scheme has increased by 3µ secs. However,
the latency of the blocking scheme remains unchanged. As compared to MTU
of 1500 on the dual processor system, the M-VIA throughput has improved by
approximately 200Mbps.



6 Conclusion

This paper has presented the performance of both hardware and software im-
plementation of VIA on uni and dual processor systems. From the performance
figures, we have verified that the VI architecture can give higher throughput and
lower communication latency to applications. We have also confirmed that elim-
inating the TCP protocol stack provide a higher throughput performance. VIA
technology can take advantage of the VIA-aware hardware. For instance, cLAN
achieves higher throughput and lower latency when compared to a software-only
implementation such as M-VIA. The effectiveness of polling and blocking syn-
chronization schemes depends on the implementation of the doorbell mechanism.

Further investigation of other VIA features such as multiple VIs and RDMA
is warranted. Moreover, we suspect that using multiple VIs on a SMP system
may yield higher throughput.

References

1. Compaq Computer Corp.,
Intel Corp., Microsoft Corp: Virtual Interface Architecture Specification version
1.0. http://developer.intel.com/design/servers/vi/. (1997)

2. E. Speight, H. Abdel-Shafi, J. K. Bennett: Realizing the Performance Potential of
the Virtual Interface Architecture. Proc. of the Int’l Conf. on Supercomputing’99.
(1999)

3. Gigabit Ethernet Alliance: Gigabit Ethernet Overview.
http://www.gigabit-ethernet.org. (1997)

4. Giganet Inc.: cLAN Performance.
http://www.giganet.com/products/performance.html.

5. N. J. Boden, D. Cohen,
R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, W. Su: Myrinet - A
Gigabit per second Local Area Network. IEEE Micro. (1995)

6. National Energy Research Scientific Computing Center: M-VIA: A High Perfor-
mance Modula VIA for Linux. http://www.nersc.gov/research/FTG/via/.

7. Paul A. Farrell, Hong Ong: Communication Performance over a Gigabit Ethernet
Network. IEEE 19th Proc. of IPCCC. (2000)

8. Q. O. Snell, A. R. Mikler, J. L. Gustafson: NetPIPE: Network Protocol Indepen-
dent Performance Evaluator. Ames Lab., Scalable Computing Lab., Iowa State.
(1997)

9. S. Pakin, M. Lauria, A. Chien: High Performance Messaging on Workstation: Illi-
nois Fast Message (FM) for Myrinet. Proc. of the Int’l Conf. on Supercomput-
ing’95. (1995)

10. Richard P. Martin, Amin M. Vahdat, David E. Culler, Thomas E. Anderson: Ef-
fects of Communication Latency, Overhead, and Bandwidth in a Cluster Architec-
ture. ISCA 24. (1997)

11. T. Von Eicken, A. Basu, V. Buch, W. Vogels: U-NET: A User Level Network In-
terface for Parallel and Distributed Computing. Proc. of the 15th SOSP. (1995)

This article was processed using the LATEX macro package with LLNCS style


