
C3 Power Tools

Brian Luethke and Stephen L. Scott∆∆∆∆
Computer Science & Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN 37830-6367 USA

∆ Research sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory (ORNL),
managed by UT-Battelle, LLC for the U. S. Department of Energy under
Contract No. DE-AC05-00OR22725.

ABSTRACT

Through the administration and use of eXtremeTORC,
HighTORC, TORC and the various other HPC clusters at
Oak Ridge National Laboratory (ORNL), it quickly became
apparent that a solution for the administration of federated
clusters, or “clusters of clusters,” was needed. While a few
cluster tools did exist when this work was started, there were
none with the vision to handle multiple clusters as a single
cohesive computing environment. These other tools also
required that the administrator or user be directly logged
into a user account on one of the clustered machines. This
resulted in at least one duplicate operation for each cluster
being addressed. It is obvious that this process does not
scale. Thus a solution was needed whereby an administrator
or general HPC user could perform duplicate operations
across multiple clusters, and portions thereof, in a scalable
and secure fashion from a single location not necessarily one
where the user is logged in. Thus was the drive for the
development of version 3.0 of the Cluster Command and
Control (C3) power tools.

KEYWORDS: cluster, administration, federated-cluster,
multi-cluster

1. Introduction

Prior to version 3.0, C3 like other tools, also required that
one be physically logged in to the cluster where operations
were to be performed. The few existing tools that permit
remote administration of clusters were all web based,
therefore they suffered the associated security problems and
setup grief associated with the installation and maintenance
of a web server. This is the 3rd generation of the C3 tools
and is an even more powerful and secure command line
cluster interface than its predecessors. While version 2.x
provided much of this functionality, it was felt that further

strides in the area of multi-cluster accessibility by providing
what we call the single system illusion.
Ten extensible general use tools have been developed in the
effort thus far: cexec, cget, ckill, cpush,
cpushimage, crm, cname, cnum, clist, and
cshutdown. The cpushimage and cshutdown are
both system administrator tools that may only be used by the
root user. The other eight tools may be employed by any
cluster user for both system and application level use.

The cexec command is the general utility tool of the C3
suite in that it enables the execution of any command on
each cluster node. As such, cexec may be considered the
clusterized version of rsh/ssh[1]. A command string
passed to cexec is executed “as is” on each node. This
provides a great deal of flexibility in both displaying the
command output and arguments passed in to each
instruction.

The cget command will retrieve the given files from each
cluster node and deposit them in a specified directory
location on the local machine. Since all files will originally
have the same name, only from different nodes, an
underscore and the node’s IP or hostname and cluster name
are appended to each file name. Whether the IP or hostname
is appended depends on which is specified in the cluster
specification file. Note that cget operates only on files and
ignores subdirectories and symbolic links

The ckill tool runs the standard Linux ‘kill’ command
on each of the cluster nodes for a specified process name.
Unlike ‘kill’, ckill must use the process name as the
process ID (PID) will most likely be different on the various
cluster nodes. The root user has the ability to further indicate
a specific user in addition to process name. This enables
root to kill a specific user’s process by name and not affect
other processes with the same name but owned by other

users. Root may also use signals to effectively do a broad
based kill command.
The cpushimage enables a system administrator logged in
as root to push a cluster node image across a specified set of
cluster nodes and optionally reboot those systems. This tool
is built upon and leverages the capabilities of
SystemImager[2]. While SystemImager provides much of
the functionality in this area, it fell short in that it did not
enable a cluster-wide push for image transfer.
cpushimage essentially pushes a request to each
participating cluster node to pull an image from the image
server. Each node then invokes the pull of the image from
the cluster image server. Of course, this description assumes
that SystemImager has already been employed to capture
and store a cluster node image on the cluster image server
machine.

While cpushimage has the ability to push an entire disk
image to a cluster node, as an application support tool, it is
too cumbersome when one simply desires to push files or
directories across the cluster. Furthermore, cpushimage is
only available to system administrators with root level
access. From these restrictions grew the desire for a
simplified cluster push tool, cpush, providing the ability
for any user to push files and entire directories across cluster
nodes. cpush uses rsync[3] to push files from server to
cluster node.

crm is a clusterized version of the standard ‘rm’ delete
file/directory command. The command will go out across
the cluster and attempt to delete the file(s) or directory target
in a given location across all specified cluster nodes. By
default, no error is returned in the case of not finding the
target. The interactive mode of ‘rm’ is not supplied in crm
due to the potential problems associated with numerous
nodes asking for delete confirmation.

The cnum command returns the node name based on the
node number and cluster supplied at the command line.

The cname command returns the node number based on
the cluster and node name supplied at the command line.
Both this command and the cnum command are useful when
the node names of your cluster and their positions in the
configuration file are not easily paired.

The clist command returns a list of clusters defined in the
cluster configuration file and the type of cluster.

2. Installation and Configuration

C3 version 2.x used a list of nodes, one per line, to define a
cluster. While it is possible to have several clusters in this
list, each node had to be visible to the machine that the C3
command was run from. Many clusters only have the head
node exposed with the individual compute nodes on a
private network. A simple list of nodes also does not allow
the granularity needed to specify from which cluster a
command is to be executed. Version three provides for the
conceptual abstraction of the cluster configuration in the
specification file. Here each block defines a single cluster –
it’s external entry point, an optional internal entry point if
the nodes are on a private network, and the list of cluster
compute nodes. This type of cluster is called a direct cluster
as the configuration of the cluster is known by the C3
command prior to runtime. Conversely, an indirect cluster is
when only the cluster itself is known via its external
interface – generally the head node. A local cluster is one
where the machine that initiates the C3 command is that
cluster’s head node. It follows that a remote cluster is one
where the machine that initiates the C3 command is not the
target cluster’s head node. It is possible to have both a local
and remote cluster configuration in the C3 configuration. A
significant advantage of this scheme is that it is possible to
build both subsets and supersets of any reachable cluster.1

The major drawback to using a direct cluster block on a
remote machine is that the user must manually keep track of
which machines are offline and which are online – this
manual process is teadous at best. C3 solves this problem
with an indirect remote cluster. As stated above, in this type
of cluster block, C3 only knows is the external interface of
the remote cluster. When a C3 command is run, it is
resolved via its execution on the remote cluster using the
default cluster configuration block – the first cluster
specified in that cluster’s configuration file. Thus the user
need not know from their desktop how many computation
nodes are available at any given instant. The only
requirement is that the cluster head node’s external interface
exist and that this head node have a working version three of
C3 available. Below is an example configuration file:

1 A cluster is defined as “reachable” providing the IP address of the head
node is known and externally available.

Cluster home { #the cluster named home.
#the dafult cluster as
#it is the first in the
#configuration file

node0 #the head node,
#external name only

node[1-15] #the compute nodes
}

cluster torc { #the cluster named torc
heimdal:node0 #the head node,

#heimdal is the
#external interface
#name and node0 is
#the internal
#interface name

node[1-64] #compute nodes
}

cluster htorc { #the cluster named htorc
:htorc-00 #this is a indirect

#remote cluster,
#htorc-00 is the
#external interface
#name

}

3. Command Line Usage

Early versions of C3 were tied to the implementation of a
PERL[4] package to parse the incoming command line. In
order to provide a greater flexibility in version three, with
respect to command line content, the decision was made to
internally implement the command line parser. The goal was
to keep the C3 API as closely aligned with the associated
Linux command as possible in order to reduce the learning
curve. Version three also added the ability to specify node
ranges on the command line. This feature has proven to be
very useful by system administrators when performing
rolling upgrades to their system’s software. An example of
the new API to execute the hostname command on the
default local cluster on nodes four through six and node
eight on the cluster named torc is as follows:

 cexec : torc:4-6,8 ls –l

In the above example, the command is cexec – a general
purpose clusterized exec similar to a cluster wide rsh.
The colon “:” signifies that this command is to execute on
the default cluster. The torc: signifies to use information
from cluster torc in the configuration file. The node range
(nodes 4, 5, 6) is specified by the 4-6 qualifier and 8
indicates itself. Last, the ls -l indicates that the standard

linux ls -l command is to be run on the specified cluster
and node combination.

4. Example Usage

The C3 power tools were designed and implemented such
that they may be used in three manners. First, the most basic
is to invoke directly from the command line prompt – one
command at a time. Second, is to group the C3 command
line operations into scripts. Last is to use the base C3
commands to write derivations and extensions to the basic
tool kit to provide for site-specific functionality.

A prime example of using the tools directly from the
command line is when performing rolling system upgrades.
Through the use of cpushimage and systemimager,
one may easily test a new cluster configuration. For
example, a number of machines may be configured into a
test cluster by using systemimager to clone the current
production cluster. If after the installation of software and
testing, the new cluster configuration is deemed acceptable,
one may retrieve this new cluster image via
systemimager and then subsequently push that disk
image to all other computation nodes via the cpushimage
command. Note that it is highly recommended that
production images be stored for backup. An example
follows where the image name is new_image:

cpushimage –reboot :0-3 new_image

This command pushes the new image to only the first four
nodes in the cluster and reboots the machine. This permits
one to easily test the new image on a sub-cluster. If this new
configuration is found to be acceptable, the following
command will push the new_image throughout the entire
cluster node range.

cpushimage –reboot new_image

Removing the :0-3 from the command will cause the
above to execute across all cluster nodes in the default
configuration file c3.conf. If it is later discovered that this
new_image is later not wanted and instead the
old_image is desired, the administrator may simply “roll
back” by issuing the following command – assuming they
previously saved an old image.

cpushimage –reboot old_image

C3 from the command line is also very useful for a general
cluster user. Using the indirect remote cluster a user can
develop an application on their desktop and easily distribute

the binary to either a single cluster or multiple clusters using
the cpush command. Using C3 in this way makes a cluster
a “black box” computation engine – that is the user only
knows that they have a resource out specified by a cluster
name2. They do not need to keep up with the addition of new
nodes nor if a few nodes have been taken offline. If the
application produces local output cget supplies an easy
way to retrieve distributed results.

Another good use of image management with C3 is effecting
changes for a single user. With C3, once the image is built, it
is quite easy to temporarily install a new image with
differences ranging from a slightly different communication
package, to a different flavor of Linux on the fly. For
example, if a user requires kerberos[5] to be installed prior
to the execution of their application, it is simple to effect this
addition as a part of staging the user’s application. Once
scripted, this makes the application a “run and leave it
alone” process. After the application has terminated, the
process may then continue on to reload the original
operating environment and reboot the machines into their
original operational state.

Another beneficial way to use C3 is through the scripting of
command sequences. While administering clusters at ORNL,
one of the more aggravating processes encountered was the
generation and managing of ssh keys when creating adding
a new user to the clusters. Since site policies differ greatly, it
is difficult to write a tool that may stand in as the general
purpose ssh manager. Thus while this script is included with
C3, it is not part of C3 proper. Please refer to figure 1 for
the code. This code is included in the examples directory
due to the above possible site conflicts. This script receives
the username and group of the user to add. It then calls
the standard Linux adduser binary, sets the user password
via the standard Linux password facility and then invokes
C3 commands to send all the files “touched” to the cluster
nodes while creating any new directory structures3. Lastly
the ssh-keys are generated and the
authorized_keys2 file is created, thusly enabling users
to ssh to one of the compute nodes without the use of a
password. Where this script and C3 really show the power
available is in combining this method with a command line.
Assuming this script is located in /usr/sbin a command
as that below will add the user zbml1 with the group
users to every cluster that the machine where this
command is executed has access.

2 As far as C3 is concerned, the user need not even know that it is a cluster.
Simply specifying the name that represents the cluster will suffice with out
any prior knowledge of the underlying architecture.
3 Herre /home is NFS mounted so that the directory only needs to be
created on the head node.

cexec –all /sbin/add_user zbml1 users

Thus it is just as easy to add a user to one cluster, as it is to
add that user to twenty-five or more clusters. The only
redundant typing is in response to when the password is
generated. However, it is trivial to write an Expect[9] script
to handle this. C3 tools may also be used to replace some
cluster wide daemons that would otherwise have to be run.
For example, NTP[6] is not necessary to keep the node’s
time in sync. A bash script created to retrieve the current
date from the head node and then issue a cexec to set the
cluster nodes to the current date replaces this. This script is
run once a day in a cron job to keep the cluster in sync. Thus
eliminating one of many additional daemon processes
running on a typical cluster node.

The third and by far the most powerful way to use the C3
tools is by extending the tools themselves. While the initial
versions of C3 was written in Perl, this later version was
written in Python[7]. One focus of the Python
implementation of C3 was to make it modular thus
simplifying their extensibility. Python was choose as it has
been increasing in popularity for Linux tools and easily
lends itself to package creation. The two significant parts of
C3 that were separated from the original code base and
moved into packages are the command line parser and the
configuration file parser. This allows functionality such as
hardware monitoring or BIOS maintenance among others, to
more easily be added. Separating the file parser into its own
package enables the system administrator to both read the
c3.conf file as well as use it as a base instance of the
cluster architecture. A good example of this use is the setting
of a cron job that once a night reads the c3.conf file and
generates an up to date configuration file for PVM. The
command line package lets a system administrator create
new tools that have the look and feel of Linux and C3 tools
thus reducing the learning curve of the command line API.

5. Conclusion

Version 3.0 of the C3 tools suite is a major advance in
cluster aware tools. The ability to administrate multiple
clusters simultaneously from anywhere one can access each
head node is very useful. Thus advancing the single system
illusion of one unified operating environment. Version three
is a significant advancement over prior versions of C3 in
that now one command may be used to launch tasks, execute
commands, and run scripts across numerous clusters even
with their compute nodes on private networks. Users and
administrators now have a way to invoke a single launch
point that will effect an operation across multiple cluster
computing environments – from their desktop environment.

6. Acknowledgements

The authors would like to acknowledge the assistance of
Phil Pfeiffer of East Tennessee State University as well as
the entire ORNL cluster computing team.

7. References

1. www.openssh.org
2. www.systemimager.org
3. samba.anu.edu.au/rsync/
4. www.perl.com
5. web.mit.edu/kerberos/www/
6. www.eecis.udel.edu/~ntp/
7. www.python.org
8. www.csm.ornl.gov/torc
9. expect.nist.gov/

#!/usr/bin/env python2

import os, sys

try:
user_name = sys.argv[1]

except IndexError:
print "must supply a user name"
sys.exit()

try:
user_group = sys.argv[2]

except IndexError:
print "must supply a group name"
sys.exit()

string_to_execute = "adduser -g " + user_group + " -m " + user_name
os.system(string_to_execute)

string_to_execute = "/usr/bin/passwd " + user_name
os.system(string_to_execute)

string_to_execute = "/opt/c3-3/cpush /etc/passwd"
os.system(string_to_execute)

string_to_execute = "/opt/c3-3/cpush /etc/shadow"
os.system(string_to_execute)

string_to_execute = "/opt/c3-3/cpush /etc/group"
os.system(string_to_execute)

string_to_execute = "/opt/c3-3/cpush /etc/gshadow"
os.system(string_to_execute)

string_to_execute = "/opt/c3-3/cexec mkdir /home/" + user_name
os.system(string_to_execute)

string_to_execute = "mkdir /home/" + user_name + "/.ssh"
os.system(string_to_execute)

string_to_execute = "/opt/c3-3/cexec chown -R " + user_name + ":" + user_group + " /home/"
+ user_name
os.system(string_to_execute)

string_to_execute = "/bin/su " + user_name + " -c \'/usr/bin/ssh-keygen -b 512 -t dsa -N
\"\" -f " + os.path.expanduser("~" + user_name) + "/.ssh/id_dsa\'"
os.system(string_to_execute)

string_to_execute = "cp /home/" + user_name + "/.ssh/id_dsa.pub /home/" + user_name +
"/.ssh/authorized_keys2"
os.system(string_to_execute)

string_to_execute = "/opt/c3-3/cexec chown -R " + user_name + ":" + user_group + " /home/"
+ user_name
os.system(string_to_execute)

Figure 1

