
1

C3 POWER TOOLS
The Next Generation…

Brian Luethke, Thomas Naughton, and Stephen L. Scott
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37830-6367, USA

Abstract: The 3rd generation of the Cluster Command and Control (C3) Power Tools is
an even more powerful and secure command line cluster interface than its
predecessors. Furthermore, C3 continues to extend the Single System Illusion
(SSi) concept from single clusters to federated clusters (multiple clusters
viewed as one computing entity) by providing secure remote access to the C3
Power Tools for both users and administrators in a manner that is as easy to
use and as transparent as command line operations issued on a single
workstation. This paper will discuss the evolution of C3 and expand on its new
capabilities.

Key words: tools, administration, federated clusters, grid

1. INTRODUCTION

There have been quite a few advances by the C3 Power Tools (Cluster
Command and Control) since they were first presented at DAPSYS 2000 [1].
Since then, C3 has evolved from a simple command line tool with the ability
to operate in an iterative manner across a single cluster of externally exposed
nodes to a robust stable tool set that is capable of securely coordinating
simultaneous parallel operations across multiple clusters scaling to the Grid
realm. Version 3.0 has been used extensively inside Oak Ridge National
Laboratory for approximately a year and has been publicly available for
download since August 2001. Version 3.1 is in final testing with release
anticipated in Summer 2002. This generation of the C3 Power Tools
includes many features that have greatly assisted the ORNL Network and
Cluster Computing Group in the day-to-day operation of the over 200+

2 Brian Luethke, Thomas Naughton, and Stephen L. Scott

processors in the research clusters of TORC, HighTORC, and
eXtremeTORC. The tools are also used to make quick work of the building
and administrating of the many ad hoc research clusters at ORNL. C3 is also
a core component of the Open Source Cluster Resource Application
Resources (OSCAR)[2] providing installation configuration services and
administration support. The C3 Power Tools are designed to easily move
information into and out of the cluster as if it were a single machine rather
than a group of loosely coupled independent machines. Thus, C3 embodies
the Single System Illusion (SSi) concept of providing the illusion of a single
system. As a result, the C3 tools will also operate on workstation farms or
labs of independent machines that are not configured as a cluster. From a
single access point, the tools may be used to invoke any command in parallel
across a group of connected machines. All but one module of version 3.x
was rewritten in Python – prior versions were completely in Perl. The main
reason for the switch was that the codes became unmanageable in Perl due to
their size. The design of C3 leverages a number of freely available tools
including: Python, Perl, rsync, ssh, rsh, SystemImager, and DHCP. The
remainder of this paper will consist of a brief introduction of the C3
commands with the greater portion dedicated to the discussion of the latest
capabilities of the version 3.x release.

2. OVERVIEW

The C3 tools suite consists of ten general use tools: cpushimage,
cshutdown, cpush, crm, cget, cexec, ckill, clist, cname, and
cnum. The cpushimage and cshutdown are both system administrator
tools that may only be used by the root user. The other eight tools may be
employed by any cluster user for both system and application level use. For
those familiar with earlier versions of C3, the cl-ps or cps command was
removed from v3.0. A brief description of each core C3 tools follows –
detailed information may be found on the web site and in the man pages [3].
The cexec command is the C3 general utility tool as it may execute any
command on each cluster node. A command string passed to cexec is
executed “as is” on each node. All C3 commands are executed in parallel,
however, cexec is the only tool that also has a serial operation mode. This
is to assist debugging complex problems where deterministic behavior is
desired. The cget command retrieves files from each cluster node and
deposits them in a specified directory on the local machine. To differentiate
files from one another, the node’s IP or hostname and cluster name are
appended to the filename. The ckill tool runs the standard Linux kill
command on each cluster node for a specified process name. Unlike kill,

C3 Power tools 3

ckill must use the process name (similar to the Linux killall), as the
process ID may be different on each node. Root has the ability to ckill by
user / process name pair. Root may also use signals to do a broad based kill.
cpushimage enables the sys-admin to push a cluster node image across
cluster nodes with the option to reboot. For general users, cpush is the tool
to copy files or directories or for root use when cpushimage is too heavy-
handed. crm is a clusterized version of the standard ‘rm’ delete
file/directory command. cname assumes that you know a single node name
and want to know its position. cnum takes a range argument and returns the
node names of those positions – no range returns all nodes. clist returns a
list of clusters and cluster type.

3. VERSION 3

The 3.x architecture improves on previous versions in the following
areas: 1) better management of multiple clusters – in particular, those
clusters in multiple administrative domains with computation nodes on a
private network – not exposed to direct outside access; 2) enhanced API with
support for user specified node ranges; and 3) Python implementation of
core code.

C3 enlists the use of three abstract cluster classifications direct-local,
direct-remote, and indirect-remote to extend the SSi concept to multiple
clusters. Older versions of C3 had only one cluster classification and to reach
multiple clusters, all compute nodes had to be exposed to the outside
network. This was not practical and also opened a large security hole. This is
not the case when using the new cluster abstractions. With these, it is
possible to reach multiple clusters where the individual nodes are on a
private subnet, sitting behind a dual-ported head node with one port
connected to the outside world and the other connected to the internal private
network. These abstractions also simplify the discussion of cluster
configurations and architectures.

C3 commands identify their compute nodes with the help of cluster
configuration files. These configuration files name a set of accessible
clusters and describe the nodes. The default cluster configuration file,
/etc/c3.conf, consists of a list of cluster descriptor blocks. These
syntactic objects name and describe a single cluster that is accessible to the
system’s users. The following code is a configuration file for a 66-node
cluster. This cluster is a direct-local cluster where all nodes are known at
runtime and commands are issued from the head cluster node.

4 Brian Luethke, Thomas Naughton, and Stephen L. Scott

cluster local {
xtorc0:node0 #head node named

#xtorc0 external, node0 internal
node[1-64] #compute nodes
exclude 10 #node10 is offline
exclude [60-64] #node60 through node64 are offline
node78 #node78 is not inside a range
dead node100 #node 100 is offline

}

In the above example, the tag cluster is followed by label local and
the open curly brace indicates the beginning of the cluster description block
– at the end is a closing curly brace. The label local is used to reference
this cluster. The first line in a cluster description block represents the head
node. The head node may be represented by any of hostname or external
interface IP address followed by the colon and then the internal hostname or
IP address. Just the hostname or IP address is needed for clusters that have
only one interface on the head node.

Next in the configuration block is the node descriptors. They may be
specified in three ways: 1) ranges, as in line node[1-64] indicating 64
nodes and 2) individual node name as in line node78, and 3) by IP address
both individually and with ranges. When specifying by IP address, ranges
are only valid for the last set of digits – 134.167.12.[2-12]. As the
position a node occupies in the configuration file is significant, nodes that
are “offline” must still occupy their position. Nodes not participating and
within a range must use the exclude qualifier to indicate offline. Only
ranges are valid with the exclude and must immediately follow the range
declaration where applied. Note that exclude5 would parse as a node name
exclude5 and is not an exclude operation – it would indicate an active
node named exclude5. Out of sequence node names are listed one per
line like node78 and node100 above. The dead qualifier is used to
indicate that an out of sequence node is offline as in dead node100.

Federated clusters are constructed as a list of cluster descriptor blocks –
one per cluster. The first cluster’s descriptor block has a special importance
that is analogous to the special significance accorded the first declaration in
a Makefile. Any instance of a C3 command that fails to name a cluster will
by default run on the first cluster in the configuration file.

The remote cluster is another classification used by the C3 cluster
abstraction. This means that the command is issued on a machine outside the
physical scope of command’s target cluster. This enables commands to be
issued, for example, from an administrator or scientist’s workstation not part
of the cluster. There are two types of remote clusters – direct and indirect.
Direct-remote clusters are when the command is issued from an outside
machine that has full knowledge of the cluster’s configuration by having its

C3 Power tools 5

own local copy of the cluster configuration file. The advantage of the direct-
remote cluster is that subsets or supersets of a remote cluster may be
constructed from both the command line and a local script. The disadvantage
is that this configuration file must be consistent with that on the cluster head
node. The indirect-remote model was developed to eliminate the need to
maintain state between the local workstation and remote cluster
configuration files. Here only the external interface of a cluster is known
prior to runtime. Here the local C3 command tells the cluster to run based on
the configuration in the cluster’s own local configuration file. This works
very well where the user simply wants to affect all available cluster nodes.
Placing a colon followed by the cluster’s head node external hostname in the
head node location of the local cluster configuration block specifies the local
configuration file. An indirect-local cluster configuration file for xtorc0
would look like the following:

cluster local {
:xtorc0

}

4. BASIC C3

Node positions can be specified in two ways, one as a range, and the
other as a single node. Ranges are specified by the following format: M-N,
where M is a positive integer (including zero) and N is a number larger than
M. Single positions are just the position number. If discontinuous ranges are
needed, a comma must separate each range. The range "0-5, 9, 11" would
execute on positions 0,1,2,3,4,5,9,11.

C3 uses machine definitions to specify clusters and ranges on the
command line - there are four options. First, none specified, this results in
execution on all nodes of the default cluster. An example of this is:

cexec ls –l

Second is a range on the default cluster – form <:range>. To execute ls
on nodes 1,2,3,4,6 of the default cluster:

cexec :1-4,6 ls –l

Third method is specifying a specific cluster – form <cluster_name:>.
To execute ls on every node in cluster test:

cexec test: ls –l

Fourth is specifying a range on a specific cluster – form
<cluster_name:range>. Execute ls on cluster test, nodes 2,3,4,10:

6 Brian Luethke, Thomas Naughton, and Stephen L. Scott

cexec test: 2-4,10 ls –l

Additionally, these four methods can be mixed on a single command line.
To execute ls on nodes 0,1,2,3,4 of the default cluster, all of htorc1 and
1,2,3,4,5 of htorc2:

cexec :0-4 htorc1: htorc2:1-5 ls –l

5. ADVANCED C3

C3 commands may also be used in shell scripts just like any other
standard command. In doing so, users and administrators may automate
advanced tasks. One such example is that of scripted software installations
across all cluster nodes. With the C3 tools, administrators have many options
as how to complete this task. One method is to update one node, create a
new system image from the updated node, and then push the image across
the cluster using cpushimage. However, if the software installation is a
small task, administrators may not want to go to the trouble of generating a
new image and pushing it across the cluster. Instead of pushing a complete
image, the administrator may use a script such as that below executed on the
server to accomplish the task. The administrator is installing a package from
a tarball by pushing the tarball to all nodes using cpush, unpacking the
tarball on all nodes using cexec, and then running the commands necessary
to build and install the package using cexec. Alternatively, the
administrator could have just created a script to install the package on a local
machine, pushed the install script and tarball to all nodes, and then run the
install script on all nodes using cexec. This is the method used for some of
the software installation tasks in OSCAR.

#!/bin/sh

#copy over package tarball
/opt/c3-3/cpush /root/software/mpich.tar.gz /tmp

#unpack tarball (creates mpich subdirectory)
/opt/c3-3/cexec tar –zxf /tmp/mpich.tar.gz

#build & install
/opt/c3-3/cexec cd /tmp/mpich; ./configure –prefix=/usr/local/mpi
/opt/c3-3/cexec cd /tmp/mpich; make; make install

Another difficult task is adding a user to a cluster. The password files and
group files may need to be distributed across the cluster along with the
creation of the appropriate home directories. This task becomes even more

C3 Power tools 7

difficult when dealing with federated clusters. It would require that an
administrator repeat each task without variance for each cluster. Below is a
scripted example of C3 doing this job.

#!/bin/sh

#First add the user to each head node in the cluster:
cexec –head htorc: torc: useradd –g users –m –s /bin/tcsh –u 512 eff

#next add the user to each compute node in the clusters:
cexec htorc: torc: useradd –g users –m –s /bin/tcsh –u 512 eff

#change the users password on one machine (use of cexecs allows
#execution of interactive commands, you could #also have used
#ssh or rsh)
cexecs –head torc: passwd eff

#distribute password files to head nodes
cexec –head torc: cpush –head htorc: torc: /etc/passwd
cexec –head torc: cpush –head htorc: torc: /etc/shadow

#distribute password files to compute nodes
cexec –head torc: cpush htorc: torc: /etc/passwd
cexec –head torc: cpush htorc: torc: /etc/shadow

One of the more powerful uses of specifying subclusters from the
command line is trying new software out on a small number of machines,
(cluster partition), otherwise known as rolling upgrades. The following
example installs a new version of MPICH on a three-node partition using
range specifiers :0-2 to reduce command scopt.

#!/bin/sh

#copy over package tarball
/opt/c3-3/cpush :0-2 /root/software/mpich.tar.gz /tmp

#unpack tarball (creates mpich subdirectory)
/opt/c3-3/cexec :0-2 tar –zxf /tmp/mpich.tar.gz

#build & install
/opt/c3-3/cexec :0-2 cd /tmp/mpich; ./configure –prefix=/usr/local/mpi
/opt/c3-3/cexec :0-2 cd /tmp/mpich; make; make install

Scripting the C3 tools can also be advantageous for general users. A
common user task is to run a parallel job and gather the resulting output files
generated on all nodes. The following script shows a user pushing out an
application, executing the application, and gathering the results to their local
workstation.

8 Brian Luethke, Thomas Naughton, and Stephen L. Scott

#!/bin/sh

uid = `is –u`
user=`id –un`
dir=”/tmp/myapp.$uid”
app=”/home/$user/apps/myapp/hello”
results=”/home/$user/apps/myapp/results”

#create temporary directory
/opt/c3-3/cexec mkdir $dir

#copy over application binary (hello)
/opt/c3-3/cpush $app $dir

#run hello (which creates a hello.out on each node)
/usr/local/mpi/bin/mpirun –np 64 $dir/hello

#collect output files
/opt/c3-3/cget $dir/hello.out $results

#remove temporary directory & contents
/opt/c3-3/crm –r –f $dir

6. PARTING REMARKS

C3 is presently a robust and stable tool that is very useful for cluster users
and administrators. While there are no plans to change the exposed portion
of C3 including the API and core commands, the team is working on
internals in an effort to increase the scalability and performance of C3 as
well as the underlying tools used to implement C3. The team is also working
on posting to the C3 web site – the many useful scripts and tools built using
C3.

Research supported by the Mathematics, Information and Computational
Sciences Office, Office of Advanced Scientific Computing Research, Office
of Science, U. S. Department of Energy, under contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC.

REFERENCES

[1] “Cluster Command & Control (C3) Tools Suite,” R. Flanery, G.A. Geist, B. Luethke,
and S. Scott), 3rd Distributed and Parallel Systems (DAPSYS 2000), September 10-13,
2000, Balatonfüred, Lake Balaton, Hungary.

[2] OSCAR – Open Source Cluster Application Resources, http://oscar.sourceforge.net/
[3] C3 – Cluster Command and Control, http://www.csm.ornl.gov/torc/C3/

