
User Interfaces for Clustering Tools

John L. Mugler and Thomas Naughton and Stephen L. Scott∗

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN
{muglerj, naughtont, scottsl}@ornl.gov

Abstract

This paper discusses ongoing research at Oak Ridge
National Laboratory (ORNL) to make computing
clusters easier to use. Cluster administration, setup,
and use is an active research area with many differ-
ent components. Two systems for cluster control
and administration, that have been experimented
with at ORNL, are Managing Multiple Clusters
(M3C) and Cluster Control GU I (C2G). M3C uses a
Java Servlet in conjunction with a Java application
server to handle communications between a remote
user and the head node. C2G takes an alternate
approach and uses the sshd to handle these mes-
sages. Another important issue to consider is the
mechanism that is used to handle communications
between compute nodes.

A new system that is under construction at ORNL is
designed to allow a user to easily keep track of soft-
ware that is loaded on a node. This system has two
components, a node manager daemon and a package
services back-end that is basically a database. Mul-
tiple software configurations for a compute node can
be stored and loaded on a node with this system.

1 Introduction

This paper generally addresses software that is be-
ing used on High Performance Computing (HPC)
clusters. The goal of such a cluster is running com-
putational code. However, this does not preclude

∗Research supported by the Mathematics, Information
and Computational Sciences Office, Office of Advanced Sci-
entific Computing Research, Office of Science, U. S. Depart-
ment of Energy, under contract No. DE-AC05-00OR22725
with UT-Battelle, LLC.

the software from being used to manage or monitor
server farms or even groups of desktop workstations.

The control of clusters is a large research area with
a wealth of problems to be addressed. The goal
of this work is to make clusters easier to install,
administrate, and use. There are several inherent
problems with designing tools that attempt to meet
these goals.

Installation tools that install cluster software have
to be simple enough for a beginner to use, and also
flexible enough for the expert. This can create the
problem of having a tool at the end of the day that
pleases neither category of user. Administration
tools suffer similar design difficulties, and the prob-
lem of differing user skill levels remains. Most ad-
ministration tools that are available today are com-
mand line tools with GUI interfaces. Not many have
been designed from the ground up as GUI only tools.
User level tool sets have some of the same issues, as
users have wide margins of skill when it comes to ba-
sic UNIX/clustering knowledge. Also, its difficult to
provide a generic system that can handle the wide
range of tasks that cluster users perform.

Additionally, representing a cluster with a GUI is
not a trivial task. So far, representing 64 machines
or even 128 is possible with conventional techniques.
When the number of machines starts exceeding this
margin, representing cluster nodes with individual
icons starts to fail. This is the issue of scalability,
and it is a real problem in GUI design for large clus-
ters. Yet scalability must be addressed in order to
have modern GUI tool sets for clusters.

The intent of this paper is to summarize ongoing ef-
forts at ORNL at designing and implementing tools
to make clusters easier to use. Additionally, the
next section surveys some systems that have been
developed in other places. Like most software, each



tool set has both advantages and disadvantages.

2 Related Work

In order to design new interfaces for clusters, it is
important to understand what has been built in the
past, and what is in use today. Several tool sets
have been developed to help run commands across
clusters. These tools are typically command line
oriented and are general purpose in nature.

These tool sets basically give a cluster user or
administrator the power to easily run commands
across an entire cluster. Several different approaches
have been taken, and both new software and revi-
sions to existing software are appearing rapidly. The
following subsections survey three different tools
that are available and in use today.

2.1 Cluster Command and Control (C3)

The C3 set of command line tools from Oak Ridge
National Laboratory (ORNL) is up to version 3.x.
C3 started life as a collection of Perl scripts and
has been re-written in Python. C3 allows a user
to run commands either sequentially or in parallel
across a cluster. The basic set of commands that
C3 provides and their general functionality is listed
below [1, p-5]:

• cexec: This is the command that C3 offers,
and can be thought of as the basis for most of
the other commands. This command enables
the execution of any command across an entire
cluster.

• cget: Enables file movement from the compute
nodes of a cluster to the head node.

• ckill: Kills or terminates a process across clus-
ters.

• cps: Can do a ps command across an entire
cluster and produce output for each node. The
results are usually stored in a text file.

• cpush: Utilizes rsync to push files or whole di-
rectories from the head node of a cluster to all
of the compute nodes.

• cpushimage: Uses Systemimager to push an op-
erating system image to a cluster node, or to all
of the nodes at once.

• crm: Deletes a file or directory across an entire
cluster.

• cshutdown: Can shutdown an entire cluster
with one command.

C3 leverages quite a few existing applications to ac-
complish its work. It uses either SSH or RSH for
communication. Additionally, it uses rsync to help
speed cpushimage, cget, and cpush, as only the dif-
ference between the old and the new image must be
transferred.

Another key feature of C3 is its ability to handle
multiple clusters from a remote host. C3 uses a
c3.conf file to specify both clusters and nodes within
clusters. This is currently a unique feature among
execution environments for clusters, which is the
ability to run the same command across multiple
clusters. Additionally a user can use a personal con-
figuration file instead of the default on the host, or
even specify a different configuration file when using
the tools.

2.2 Scalable Unix Tools (SUT)

This collection of utilities by Argonne National Lab-
oratory, leverages the MPI communication environ-
ment to achieve scalability. This set of programs
is basically a reimplementation of common UNIX
tools to be useful in a parallel environment. The
commands are named the same as most UNIX utili-
ties, but are prefaced by a pt[8, p-2,3], such as ptcp,
the replacement for cp. Additionally, all of the com-
mands produce output in text, so this extends the
UNIX command line to a parallel environment. All
of the output can be piped to other common UNIX
utilities.

Four new utilities have been produced that have no
traditional UNIX counterpart, and it is worth listing
them here [8, p-3]:

• ptfps: A parallel implementation of the classic
UNIX find command with the same syntax.

• ptdistrib: This command is used to basically
run a complex task over a set of files on a re-



mote node. It can also retrieve the results of
its operation.

• ptexec: Executes a command on all the nodes
in a parallel fashion.

• ptpred: Runs a test to see if a file is present on
compute nodes, and returns a one if it is there,
a zero otherwise.

The tools also make use of MPD, or the multipur-
pose daemon, that can quickly start up jobs across
an entire cluster, although MPI must be installed to
run with MPD to make use of this feature. MPD
was created specifically for fast command startup
across clusters of computers.

2.3 Ganglia Execution Environment
GEXEC

A new system that has been recently been released
(April 23, 20002) is the Ganglia Execution Envi-
ronment, or GEXEC. This system is really a build-
ing block for other tools. It is comprised of both a
daemon/server and a client that has access to the
daemons. Additionally, a library is offered as part of
the package, so that new applications can be written
and directly use the system. The daemons arrange
themselves into a n-ary tree for scalabilityGEXEC

An authd must be run with the system, that verifies
who a user is that wants to run a command. This
forces security by making a job authenticate on the
host on which it is trying to run. The authd system
makes use of RSA based encryption via OpenSSL[2].

The client half of this system, uses the gexec com-
mand on the command line. Real time node infor-
mation can be provided by the Ganglia monitoring
core, which can prevent trying to run jobs on nodes
that are not responsive [2].

3 GUI interface tools

This section of the paper surveys some past work
at Oak Ridge National Laboratory, and summarizes
current work and development. The last section of
the paper dealt with some toolkits that can expand

a users control of one cluster, with the notable ex-
ception of C3. This is an important task, but control
of multiple clusters is becoming increasingly impor-
tant. It is common to leverage more than one cluster
in todays computing world. Splitting up large clus-
ters into multiple systems for better control or just
simply segregation for various users is also increas-
ingly common. The notion of using multiple clusters
within one domain gives rise to the term federated
cluster.

At ORNL, we are defining a federated cluster to be
one or more groups of clusters. Command line tool
sets are probably not capable of handling situations
like this, when the number of clusters can rise to the
hundreds and the number of nodes to the thousands.
Some type of graphical user interface system will
have to developed to handle a system of this nature.

3.1 Managing Multiple Clusters

Managing Multiple Clusters or M3C, was a sys-
tem that was originally conceived to handle multiple
clusters. It was designed to be a distributed appli-
cation having several distinct pieces. This consisted
of a client application in the form of a java applet,
a server application in the form of a cgi program
running on a web server, and a proxy [6, p2].

To use the system, a user would initiate an action on
the client, and pass a message via HTTP to either
the proxy or directly to the cgi script. The action
would be a request for a cluster to do something.
To perform an action on a cluster, the cgi script,
running on the head node of a cluster, would write
to a file or possibly send a message to a back end
process. The back end process would fulfill the re-
quest, and provide some form of output back to the
cgi script. The cgi script would then send a message
back to the client and the client would update the
applet in the browser. The proxy was the means by
which a client could communicate with more than
one cgi script, thus the multiple cluster aspect of
M3C [6, pp 3-4] [5].

M3C was designed as a framework first and a pack-
age of services second, although six applications
were designed in the initial package. A significant
advantage of this system was the ability to accept
plug-ins. The intent being that many different ap-
plications could be written to make use of the sys-
tem. A plug-in would be provided to the applet,



the cgi script, and also to the proxy to make this
work.[6, p-2]

3.1.1 M3C: A Different Approach

M3C went through several design changes and mod-
ifications. The last prototype of M3C revolved
around a major design change. The applet was by-
passed in favor of a standalone java client applica-
tion. The proxy was dropped completely, and the
client was designed to be enhanced to take over its
responsibility in communicating with multiple clus-
ters.

This simplified the system quite a bit. All commu-
nication was still performed via HTTP. The CGI
script evolved into a Java Servlet, running on Tom-
cat which is an open source server designed for run-
ning Java Servlets. A simple GUI was constructed
to be the client and hard coded with the necessary
instructions to run C3 commands on the back end.
After implementing and testing this simpler proto-
type of M3C, it was decided that most of the goals
of the system could be met by a standalone client.

3.2 Cluster Control GUI (C2G)

The C2G system has been designed and is being im-
plemented using most of the key ideas of M3C, but
with much less infrastructure. The idea of extensi-
bility and using plug-ins to extend a basic system
has been kept. In fact, the current design of C2G
has been vastly simplified to a standalone client.
Since there is such a problem representing large clus-
ters, this new approach tries to avoid the notion of
a strict GUI framework altogether. The design ap-
proach has evolved to these basic goals:

1. Provide a framework for loading programs that
are in the form of python scripts, and provide
some form of general GUI interface that ties the
system together.

2. Provide secure communication services, or ac-
cess to such services, that allow these scripts
to have access to cluster head nodes. Provide
some mechanism so that information about
available clusters can be readily determined.

3. Give a script or plug-in writer the ability to
provide for their own display of results. Avoid

forcing a developer to use the default style of
GUI or inherit provided classes.

4. Provide a simple default GUI and API for dis-
playing the output of simple programs.

5. Provide an API for communicating with com-
mon cluster execution environments.

The guiding principal behind this system is simplic-
ity. While it might be possible to anticipate some
needs of some small subset of cluster users and ad-
ministrators, it is completely impossible to predict
how to support very many cases within a rigid GUI
framework.

A GUI does not have to be fast or scalable, it must
be responsive to a user. It is reasonable to believe
that a C2G client can be run by itself on a user’s
desktop, and thus computational overhead is not so
important. It is up to the GUI to rely on scalable
back ends and communication packages to achieve
the overall desired goal of increased cluster through-
put.

Initially, SSH is being used to pass the messages
from the C2G client to the headnode. A configura-
tion file that supports the notion of federated clus-
ters is being used, so that clusters can be defined in
a uniform fashion. This file is an XML format and
a schema has been produced to describe the file.
A basic GUI system has been implemented using
Python/tk, and a prototype API is currently being
constructed and evaluated. The initial back end ex-
ecution environment is SSH or RSH, as C2G needs
to be able to run some basic commands without re-
liance on any back end package. The system is still
a prototype, but initial results are encouraging.

4 Node Manager/Package Services

As part of the SciDAC:SSS [4] initiative, new soft-
ware is being designed and written with the purpose
of creating scalable clustering software. The goal is
to design and implement a complete system that has
interoperability between all the pieces. A message
passing API has been agreed upon by the partici-
pating organizations, based upon XML over sockets.
This ensures that the independent pieces can com-
municate with each other. At this juncture the Sci-
DAC:SSS working groups are principally concerned



with identifying and publishing these component in-
terfaces. At Oak Ridge National Laboratory, two
components are currently under development Node
Manager and Package Services.

4.1 Node Manager

The Node Manager (NodeMgr) is a generalized ad-
ministration component that oversees most static
characteristics of the cluster, (e.g. OS, installed
software). The current design has NodeMgr pro-
viding a select set of functions which can be re-
quested through the prescribed XML/socket inter-
face. These functions include reboot, halt, power
(cycle), getimage, setimage, rebuild, setstate and
getstate. The initial prototype leverages C3 [1], OS-
CAR [7] and the current prototype of Package Ser-
vices.

NodeMgr uses services provided by other compo-
nents like Package Services to determine what soft-
ware is available on a given node. The state infor-
mation is also currently maintained by the Package
Services prototype but may be transferred elsewhere
as the system evolves. NodeMgr delegates dynamic
aspects such as CPU load, available memory, etc.
to the monitoring components. When considering
the example of rebuilding a compute node there are
obvious interactions among all these components,
which is performed through the published compo-
nent XML/socket interface.

4.2 Package Services

Package Services (PS)is the back end database to
NodeMgr. PS is currently a PostgresSQL database
which is intended to run on the head node of a clus-
ter. PS has been designed to be as general as pos-
sible, and merely stores information. In the current
implementation of PS, tables are in place to store
information about the nodes and the software that
runs on a cluster. A few highlights of PS include:

• The ability to have an image associated with
a host or group of hosts. An image is defined
as a collection of software packages. Currently
an rpm is considered to be a package, but tar-
balls and other types of packages will also be
supported.

• The ability to further tune your software book-
keeping by having software groups. A software
group is defined as a collection of compatible
packages.

• An image may be defined to be made up of both
software groups and images.

• The notion of a hardware group is also avail-
able. A hardware group may be associated with
an image or collection of images.

PS is still in the design and prototype phase. There
are several issues that remain with PS. The first
is that it must be able to support large numbers
of nodes, and scale well. In its current form this
may not be possible, at least to the extent that Sci-
DAC:SSS envisions. It may be necessary to build a
front end to the database that is capable of commu-
nicating with other PS’s as necessary. This is some-
what dependent on the functionality of NodeMgr
and the topology of a supported cluster.

The second modification/addition that may be nec-
essary is to provide PS with message passing ability.
It has not been decided if NodeMgr will provide all
the necessary communications with PS, if another
SciDAC:SSS component wants to talk with it.

5 Summary

This paper has summarized three general purpose
parallel execution environments that are appropri-
ate for High Performance Computing. These en-
vironments are suited to many tasks that adminis-
trators and users perform on clusters everyday. A
general Graphical User Interface that allows general
access to tools of this type is a desired item, and an
active area of research.

ORNL is working on a tool named M3C/C2G to
satisfy this need, and it is thought that this system
can become an interface to many back end cluster-
ing tools. The earlier efforts at designing and im-
plementing M3C, helped bring about many of the
current design decisions. Like many pieces of widely
used software, C2G tries to solve the problem of a
general GUI interface by implementing a fairly small
utility, that is good at one thing, and interfaces well
with other software such as communications soft-
ware and parallel execution environments.



Additionally, a system consisting of a pair of ser-
vices for controlling the software that is loaded on
compute nodes was discussed. The design of this
system is a direct result of working with the Sci-
dac:SSS project. Cluster distributions like NPACI
Rocks [9] and OSCAR, have produced software that
can do an initial cluster installation, but the need
for modifying and managing compute nodes after
the initial installation is still apparent.

References

[1] M. Brim, R. Flanery, A. Geist, B. Luethke, and
S. Scott. Cluster Command & Control (C3) tools
suite. In To be published in, Parallel and Dis-
tributed Computing Practices, DAPSYS Special
Edition, 2002.

[2] Brent Chun. Ganglia cluster toolkit.
http://http://www.cs.berkeley.edu/ bnc/gexec/.

[3] Scyld Computing Corporation. Scyld be-
owulf clustering for high performance comput-
ing. Technical report, Scyld Corporation, April
2001.

[4] Al Geist et al. Scalable Systems Software
Enabling Technology Center, March 7, 2001.
http://www.csm.ornl.gov/scidac/ScalableSystems/.

[5] R. Flannery, A. Geist, B. Luethke, J. Schwidder,
and S. Scott. The scalable system administrator:
via c3 and m3c tools. In The Second Interna-
tional Workshop on Cluster-Based Computing,
2000.

[6] Al Geist and Jens Schwidder. Manag-
ing multiple pc clusters. Technical re-
port, Oak Ridge National Laboratory, 2000.
http://www.csm.ornl.gov/ geist.

[7] Thomas Naughton, Stephen L. Scott, Brian
Barrett, Jeff Squyres, Andrew Lumsdaine, and
Yung-Chin Fang. The Penguin in the Pail –
OSCAR Cluster Installation Tool. In The 6th
World Multi Conference on Systemics, Cyber-
netics and Informatics (SCI 2002), Invited Ses-
sion of SCI’02, Commodity, High Performance
Cluster Computing Technologies and Applica-
tions, Orlando, FL, USA, 2002.

[8] Emil Ong, Ewing Lusk, and William Gropp.
Scaleable unix commands for parallel processors:

A high-performance implementation. Techni-
cal report, Argonne National Laborotory, 2002.
http://www-fp.mcs.anl.gov/sut.

[9] Philip M. Papadopoulis, Mason J. Katz, and
Greg Bruno. Npaci rocks: Tools and techniques
for easily deploying manageable linux clusters.
In Cluster, 2001. http://www.cacr.caltech.edu.


