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This paper presents a hierarchical clustering method named RACHET (Recursive Agglomeration of Clustering 
Hierarchies by Encircling Tactic) for analyzing multi-dimensional distributed data. A typical clustering 
algorithm requires bringing all the data in a centralized warehouse. This results in )(ndO  transmission cost, 
where n is the number of items and d is the number of features. For massive datasets, this is prohibitively 
expensive. In contrast, RACHET runs with at most )(nO  time, space, and communication costs to build a 
global hierarchy of comparable clustering quality by merging locally generated clustering hierarchies. RACHET 
employs the encircling tactic in which the merges at each stage are chosen to minimize the volume of a covering 
hypersphere. For each cluster centroid, RACHET maintains descriptive statistics of constant complexity to 
enable these choices. RACHET’s framework is applicable to a wide class of centroid-based hierarchical 
clustering algorithms, such as centroid, medoid, and Ward.  

 
1 Introduction 
 
Clustering of multidimensional data is a critical step in many fields including data mining [FHSU96], statistical data 
analysis [A73, KR89], pattern recognition and image processing [F90], and business applications [BKKPS96]. 
Hierarchical clustering based on a dissimilarity measure is perhaps the most common form of clustering. It is an 
iterative process of merging (agglomeration) or splitting (partition) of clusters that creates a tree structure called a 
dendrogram from a set of data points. Centroid-based hierarchical clustering algorithms, such as centroid, medoid, 
or minimum variance [A73], define the dissimilarity metric between two clusters as some function (e.g., Lance-
Williams [LW67]) of distances between cluster centers. Euclidean distance is typically used. 

We focus on the distributed hierarchical clustering problem. We create a hierarchical decomposition of massive 
data sets that are inherently distributed among various sites connected by a network. For practical reasons, the 
application to distributed and very massive (both in terms of data points and the number of features, or dimensions, 
for each point) datasets raises a number of major requirements for any solution to this problem: 

1) Qualitative comparability. The quality of the hierarchical clustering system produced by the distributed 
approach should be comparable to the quality of the clustering hierarchy generated from centralized data.  

2) Computational complexity reduction. Asymptotic time and space complexity of a distributed algorithm 
should be less than or equal to the asymptotic complexity of the corresponding centralized approach. 

3) Scalability. The algorithms should be scalable with the number of data points, the number of features, and 
the number of data stores. 

4) Communication acceptability. The data transfer/communication overheads should be modest. Doing this 
with minimal communication of data is a challenge. 

5) Flexibility. If the solution is based on an existing clustering algorithm, then it should be applicable to a wide 
class of clustering algorithms. 

6) Visual representation sufficiency. The summarized description of the resulting global hierarchical cluster 
structure should be sufficient for its accurate visual representation. 

Current clustering approaches do not offer a solution to the distributed hierarchical clustering problem that meets all 
these requirements. Most clustering approaches [M83, DE84, JMF99] are restricted to the centralized data situation 
that requires bringing all the data together in a single, centralized warehouse. For large datasets, the transmission 
cost becomes prohibitive. If centralized, clustering massive centralized data is not feasible in practice using existing 
algorithms and hardware.  



 Distributed clustering approaches 
necessarily depend on how the data are 
distributed.  Possible combinations are: vertical 
(features), horizontal (data points), and block 
fragmentations. For vertically distributed data 
sets, Johnson and Kargupta [JK99] proposed the 
Collective Hierarchical Clustering (CHC) 
algorithm for generating hierarchical clusters. 
The CHC runs with a )( nSO  space and 

)(nO communication requirement, where n is 
the number of data points and |S| is the number 
of data sites. Its time complexity is )( 2nSO , 

and the implementation is restricted to single 
link clustering. Parallel based hierarchical 
clustering approaches [O95, DM99] can be 
considered as a special case of horizontal data 
distribution. However, these algorithms are 
tailored to a specific hardware architecture (e.g., 
PRAM) or restricted to a certain number of 
processors. Moreover, there is a major 
distinction between parallel and horizontally 
distributed approaches: the data are already 

distributed so that we do not have the luxury of distributing data for optimal algorithm performance as is often done 
for parallel computation. 

We present a clustering algorithm named RACHET that is especially suitable for very large, high-dimensional, 
and horizontally distributed datasets. RACHET builds a global hierarchy by merging clustering hierarchies 
generated locally at each of the distributed data sites. Its time, space, and transmission costs are at most linear )(nO  
in the size of the dataset. This includes only the complexity of the transmission and agglomeration phases and does 
not include the complexity of generating local clustering hierarchies. Cluster quality of RACHET can be refined by 
feature set fragmentation and replication of descriptive statistics for cluster centroids. Finally, RACHET’s 
summarized description of the global clustering hierarchy is sufficient for its accurate visual representation that 
maximally preserves the proximity between data points. 
 
2 The RACHET Algorithm 
 
We make the following assumptions. First, the data are distributed across several sites where each site has the same 
set of features but on different items. Homogeneity is assumed not only for the type of features of the problem 
domain but also for the units of measurements of those features. Next, we use Euclidean distance as the measure of 
dissimilarity between individual points. Finally, the implementation of RACHET assumes a centroid-based 
hierarchical clustering algorithm, such as centroid, medoid, or minimum variance (Ward’s). Fig. 1 presents the core 
of RACHET.  
 
2.1  Centroid Descriptive Statistics 
 
Selection and effective description of cluster Descriptive Statistics (DS), or summarized cluster representation, is an 
important step in merging local clustering hierarchies and in visualization of the global hierarchy. DS have to meet a 
number of major requirements: 

• They should occupy much less space than the naive representation, which maintains all objects in a cluster. 
• They should be adequate for efficiently calculating all measurements involved in making clustering 

decisions such as merging or reconfiguration. 
• They should be sufficient to visually represent the global hierarchy. 

Dendrogram build-global-dendrogram(Dendrogram []D ) { 

For each }0:,{ Sjiji ≤<≤ compute ),( jiapprox ccd
rr

 

For each }0:{ Sii ≤≤ compute 

 )(iNN = find-best-match(D[ i], []D ) 

 ),()( ))(( iNNidexOfiapprox ccdiDISS
rr=  

Initialize ogramGlobalDend  

Repeat 1−S  times  

 Determine i  such that DISS(i) is minimized 
 ][1 iDDendogram ←  

 )(2 iNNDendogram ←  
 Dendrogram3 = merge-dendrograms(Dendrogram1,  

Dendrogram2) 
 Update ogramGlobalDend , each )(iDISS  and 

)(iNN  as necessary 

return ogramGlobalDend } 

Figure 1. An efficient algorithm to build a global dendogram. 
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4) SUMc is the sum of the components of the centroid, i.e. SUMc:= Νc ∑ =
=

dj
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5) MINc is the minimum value of the centroid components, i.e. MINc:= Νc cjdj
f

≤≤1
min  

6) MAXc is the maximum value of the centroid components, i.e. MAXc:= Νc cjdj
f

≤≤1
max  

 
2.2  Euclidean Distance Approximation 
 
Given two centroids, 1c

r
 and 2c

r
, the squared Euclidean distance between them is defined as: 
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To compute the Euclidean distance between centroids from different local datasets would require the transmission of 
all d centroid components. This approach would require transmission of cluster centroids represented by each node 
of the dendrogram generated at each of the D  local datasets. This would result in a transmission cost of )(ndO , 

which can be prohibitively high.  
Given the DS of each cluster, we can derive an approximated distance between the two cluster centroids. 

Equation (1) can be expanded as follows: 
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If the cross-product term is ignored, then the distance can be approximated by the sum of square norms of the 
centroids. This results in a significant error. To reduce this error, we can place a non-zero upper and lower bound on 
the cross-product term: 
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Inequalities (3) and (4) hold, if each component of the cluster centroid is positive.  Taking the maximum of the 
lower bounds and the minimum of the upper bounds in (3) and (4) leads to the following bounds on the Euclidean 
distance: 
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Taking the simple mean of the minimum and the maximum square distances gives an approximation of the squared 
Euclidean distance between two centroids 
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This approximation can be further improved, if the d components of a cluster centroid are partitioned into the k 
fragments, and MINc(k), MAXc(k), and SUMc(k) are maintained for each of the k fragments. In this case, the parameter k 
will be called the fragmentation parameter. 
 
2.3  Merging Two Dendrograms 
 

Given data sets S1 and S2 and their dendrograms D1 and D2, generated by a hierarchical clustering algorithm 
applied locally to each data set, Fig. 2 illustrates four different cases (out of six possible) of merging the two 
dendrograms (Fig. 2.a) into dendrogram Dnew.  Each cluster is represented by a covering hypersphere ),( cRc

r
 

defined by its centroid c
r

 and radius cR .  In what follows, the terms “cluster” and its “hypersphere” will be used 
interchangeably.  

Case 1 (Fig. 2.b): This case is designed to merge two well separated datasets.  Two clusters, 1c
r

 and 2c
r

, are 

well separated if their hyperspheres do not intersect.  That is, 
21

),( 21 cc RRccd +≥rr
. In this case, a new parent 

node, Dnew, is created and dendrograms D1 and D2 become the children of the new node. The descriptive statistics of 
the new cluster are updated. The new cluster centroid is computed as the center of gravity of mass 

21 cc NN + with 

the radius updated based on the Huyghen’s equation [LMW84].  Due to the lack of space, the details on how to 
update descriptive statistics are omitted.  

Case 2: Here the data points of the first cluster are contained in the hypersphere with center 2c
r

 and radius 
2cR , 

i.e. 
2

),( 21 cRccd <rr
. This case is further subdivided into two subcases: 

Case 2.a (Fig. 2.c): The first cluster ),(
11 cRc

r
 is well separated from any other child cluster ),(

22 jcj Rc
r

 of the 

second cluster ),(
22 cRc

r
, ,...2,1=j . In this case, dendrogram D1 becomes a new child of dendrogram D2. The 

descriptive statistics of  2c
r

are updated similarly to Case 1.  

Case 2.b (Fig. 2.d):  The first cluster ),(
11 cRc

r
 overlaps with one or more child clusters ),(

22 jcj Rc
r

 of the 

second cluster ),(
22 cRc

r
, ,...2,1=j .  Here the child cluster that matches best with the dendrogram D1 is selected 

to be merged with this dendrogram using a recursive call to the merge_dendrograms() process.  There are a number 
of possible choices for defining a “best match”. One choice for the best match is the cluster that has the largest 
intersection area with the candidate cluster. The new node that is returned by the merge_dendrograms() process 
replaces the selected child in the dendrogram D2.  If the new node Dnew has more than two children, then its 
descriptive statistics are obtained by repeatedly updating two children at a time.   



Case 3: This case addresses the situation when data points of the second cluster are contained in the hypersphere 
with the center 1c

r
 and the radius 

1c
R , i.e. 

1
),( 21 cRccd <rr

. This case is similar to case 2. 

Case 4 (Fig. 2.e): This last case is designed to merge partially overlapped clusters, i.e. (
21

),( 21 cc RRccd +<rr
) 

and (
1

),( 21 cRccd >rr
or 

2
),( 21 cRccd >rr

).  This case tries to improve the quality of the clustering by 

reconfiguring the children of both dendrograms D1 and D2. We omit the details.  
 

3  Summary and Future Work 
 
This paper has presented RACHET, a hierarchical clustering method for very large, high-dimensional, and 
horizontally distributed data sets. Most hierarchical clustering algorithms suffer from severe drawbacks when 
applied to very massive and distributed data sets: 1) they require prohibitively high communication cost to centralize 
the data to a single site and 2) they do not scale up with the data base size and with the dimensionality of data sets. 
RACHET makes the scalability problem more tractable. This is achieved by generating local clustering hierarchies 
on smaller data subsets and using condensed cluster summaries for the consecutive agglomeration of these 
hierarchies while maintaining the clustering quality. Moreover, RACHET has significantly lower (linear) 
communication costs than traditional centralized approaches.  

In the near future, we plan to concentrate on: 
• Error-bounded approximation of  Euclidean distance. 
• Refinement of RACHET to handle non-spherical shapes for cluster representation, i.e. non-normal and mixed 

forms to approximate the distribution of data points in the cluster. 
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Figure 2. Illustration of the four cases to merge two dendograms. (a) Two dendograms D1 and D2. (b) 
Merging two well separated clusters (Case 1). (c) Making cluster S1 a subcluster of cluster S2 provided
a proper containment of cluster S1 in cluster S2 (Case 2.a). (d) Merging cluster S1 with the best matched
subcluster of clster S2 provided a proper containment of cluster S1 in cluster S2 (Case 2.b). (e) Merging 
two overlapping clusters (Case 4) 



• Study of the sensitivity of RACHET‘s performance to various characteristics of the data. The characteristics 
include various partitions of data points across distributed sites, clusters of different shapes, sizes, and densities, 
the number of data sites, different sizes and dimensions of data, and so on. 

• Extension of RACHET to handle non-centroid-based hierarchical algorithms as well as non-Euclidean 
dissimilarity measures. 

• Application of RACHET to very large real and synthetic data sets.  
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