
Distributed Dimension Reduction Algorithms

for Widely Dispersed Data∗

Faisal N. Abu-Khzam†, Nagiza Samatova‡§, George Ostrouchov‡,
Michael A. Langston†¶, and Al Geist‡

Abstract

It is well known that information retrieval, cluster-
ing and visualization can often be improved by re-
ducing the dimensionality of high dimensional data.
Classical techniques offer optimality but are much too
slow for extremely large databases. The problem be-
comes harder yet when data are distributed across
geographically dispersed machines. To address this
need, an effective distributed dimension reduction al-
gorithm is developed. Motivated by the success of the
serial (non-distributed) FastMap heuristic of Falout-
sos and Lin, the distributed method presented here
is intended to be fast, accurate and reliable. It runs
in linear time and requires very little data transmis-
sion. A series of experiments is conducted to gauge
how the algorithm’s emphasis on minimal data trans-
mission affects solution quality. Stress function mea-
surements indicate that the distributed algorithm is
highly competitive with the original FastMap heuris-
tic.
Keywords: Data Mining, Distributed Databases, Infor-

mation Systems, Parallel and Distributed Algorithms

1 Introduction

A set S of points in a d-dimensional space often be-
long to an embedded manifold of dimension d′ ¿ d.
Classic dimension reduction techniques [3, 8, 5] com-
pute an optimal k-dimensional representation of S

∗Research sponsored by the Laboratory Directed Research
and Development Program of Oak Ridge National Laboratory
(ORNL), managed by UT-Battelle, LLC for the U. S. Depart-
ment of Energy under Contract No.DE-AC05-00OR22725.

†Department of Computer Science, University of Tennessee,
Knoxville, TN 37996–3450.

‡Computer Science and Mathematics Division, Oak Ridge
National Laboratory, P.O.Box 2008, Oak Ridge, TN 37831–
6367.

§Communicating author samatovan@ornl.gov.
¶This author’s research is supported in part by the National

Science Foundation under grants EIA–9972889 and CCR–
0075792, by the Office of Naval Research under grant N00014–
01–1–0608, and by the Tennessee Center for Information Tech-
nology Research under award E01–0178–081.

for a specified k ≤ d and a given optimality crite-
rion. Techniques related to principal components [3]
begin with coordinates of the points, whereas those
related to multidimensional scaling [8, 5] begin with
a complete set of pairwise distances. All of these re-
quire at least quadratic running time, making them
reasonable reduction candidates only as long as S is
not too large. The focus of this paper, however, is
on the case in which S is of some immense size N ,
with its elements distributed across a modest num-
ber s of locations. This models a variety of timely
environments, for example, when massive data sets
reside on a number of different, geographically dis-
persed machines. It is usually impractical or impos-
sible to bring such data sets to a central location.
Thus, our main objective is to reduce dimensional-
ity in a way that does not require moving all the
data, rather only some much smaller representation
of the data. A similar approach is taken in [7]. A re-
duction in dimensionality has been shown to help in
data mining and related applications. For example,
it can assist in effective data visualization and reveal
the way the data are clustered [4, 6].

One of the major challenges researchers face in
dealing with massive sets of data is algorithm scal-
ability as the sets grow in size. Algorithms that scale
as Ω(N2) or higher quickly become computationally
infeasible. Moreover, in parallel and distributed algo-
rithms, the cost of data transmission often dominates
the execution time. For these reasons, we seek a dis-
tributed dimension reduction algorithm that not only
runs in linear or almost-linear time, but also requires
as little data communication as possible.

Among the various alternatives available, we have
chosen for exploitation the attractive FastMap heuris-
tic [2]. It can be interpreted as an approximation
to principal components that operates on pairwise
distances rather than coordinates. FastMap is a
linear-time serial algorithm. Even when data objects
(points) are specified only by their d-dimensional co-
ordinates, as they are in our case, FastMap runs in
linear time and can serve as a dimension reduction al-
gorithm [6]. We therefore wish to study the potential

1

feasibility of distributed versions of this handy heuris-
tic. Of course the naive method of bringing all data to
a central location and then running FastMap requires
a prohibitive amount of data transfers. We call this
method Centralized FastMap, as opposed to our ver-
sions of Distributed FastMap. FastMap gained popu-
larity in part because of empirical demonstrations of
the quality of its solutions. For example, its quality
was tested in [2] against that of Multi-Dimensional
Scaling [8] by measuring the price/performance of
each algorithm. We will similarly measure the quality
of our versions of Distributed FastMap by comparing
their results to those of Centralized FastMap.

In the next section, we describe FastMap in detail
and discuss how it can be used as a linear-time di-
mension reduction technique. In Section 3, we devise
two versions of Distributed FastMap. Experimental
results are presented in Section 4. A final section pro-
vides a summary of our work and some insights on
the performance of our algorithms.

2 An Overview of FastMap

Assuming the distance between any two elements of
S is given and obeys the triangle inequality, FastMap
produces a k-dimensional representation of S by pro-
jecting its points onto k carefully selected orthogonal
lines. In selecting each suitable line, three points are
chosen: the first is arbitrary; the second, Oa, is far-
thest from the first; the third, Ob, is farthest from the
second. The axis, analogous to a principal component
axis, is then defined solely by the pair (Oa, Ob), whose
elements are henceforth termed “pivots.”

FastMap proceeds iteratively. At the ith step,
1 ≤ i < k, it finds pivots to form the axis (Oai, Obi),
and operates on the projection of S on a hyperplane,
Hi, orthogonal to all previously selected axes. Let
d0(P,Q) denote the original distance between points
P and Q, and let di(P,Q) denote the distance be-
tween the projections of points P and Q on Hi. Us-
ing elementary Euclidean geometry as in [2], point
P ’s ith coordinate, Pi, is determined by using di−1

in the formula

Pi =
di−1(Oai, P)2 + di−1(Oai, Obi)2 − di−1(Obi, P)2

2di−1(Oai, Obi)

and di(P, Q) is determined by using d0 and the coor-
dinates just computed in the formula

di(P, Q) =
√

d0(P, Q)2 − Σi−1
j=1(Pj −Qj)2.

Recall that we are interested in the features prob-
lem. We must avoid computing all pairwise distances

FastMap(S, k)
begin
let ProjectionMatrix be a k × |S| matrix
let PivotsMatrix be a 2k × d matrix
for i = 1 to k do

begin
(Oai, Obi) ← ChooseObjects(S, i)
store (Oai, Obi) in PivotsMatrix
compute Pi for each point P in S
store all Pi values in ith row of ProjectionMatrix
end

return ProjectionMatrix and PivotsMatrix
end

Figure 1: The FastMap Heuristic

ChooseObjects(S, i)
begin
choose arbitrary point Oc

compute distance di−1(Oc, P) for each point P in S
select point Oai for which di−1(Oc, Oai) is maximum
compute distance di−1(Oai, P) for each point P in S
select point Obi for which di−1(Obi, Oai) is maximum
return Oai and Obi as the ith pivot pair
end

Figure 2: The ChooseObjects Subroutine

between the elements of S, a task that would con-
sume quadratic time. To ensure a linear running
time, distances are therefore computed only as they
are needed. Pseudo code for (the features version of)
FastMap and its ancillary routine ChooseObjects is
in Figures 1 and 2.

3 Distributed FastMap

We assume that S is stored as a collection of dis-
joint data sets, one for each of s distinct machines.
Thus subset Si is assumed to be resident on machine
Mi for i ∈ [1, s]. Each element is stored in some
d-dimensional representation. Pairwise distances are
not given, but can be computed as previously dis-
cussed. The objective is to find k global axes of pro-
jection so that, in a new k-dimensional representa-
tion, the original distances are preserved as much as
possible.

The intuition behind our approach is as follows.
FastMap tends to select each pair of pivots so that
they are widely separated and among the extreme
points of a data set. If we have several data sub-
sets then, by strategically choosing a few points from

2

OneTime(Sj , k)
begin
LocalPivots ← FastMap(Sj , k)
if j 6= 1 then begin

send LocalPivots to M1

receive GlobalPivots from M1

end
else begin

Points ← LocalPivots
for i = 2 to s do

Points ← Points ∪ LocalPivots received
from Mi

GlobalPivots ← FastMap(Points,k)
for i = 2 to s do

send GlobalPivots to Mi

end
for i = 1 to k do

compute ith global coordinate for all points in
Sj ∪ GlobalPivots

end

Figure 3: The OneTime Algorithm

each one, the user might in general expect to wind
up with a reasonable collection of points from which
to select pivot pairs for the combined data set. We
present two approaches. In each, one of the machines,
say M1, will serve as a “merger.” It will obtain piv-
ots generated locally on each machine (including the
merger machine itself) and use them to choose global
pivots.

Our first algorithm uses all the chosen points at one
time. Each machine first runs FastMap, then sends
its k local pivot pairs to the merger machine. When
all pairs are received, the merger runs FastMap on
the complete set of pivots, generates k global pairs,
and broadcasts them to all other machines. It is easy
to see that this strategy runs in linear time and incurs
communication cost O(ksd). Our second algorithm is
to iterate at each coordinate. This of course requires
more send/receive cycles. It also allows all machines
to work from the same projection at each iteration
and so may provide better solutions. Pseudo code
for each process is in Figures 3 and 4.

4 Experimental Results

We seek to compare the performance of these two
fast versions of Distributed FastMap with Central-
ized FastMap, bearing in mind that our objective is
to preserve distances as much as possible. To accom-
plish this we employ, as did the work reported in [2],

Iterative(Sj , k)
begin
if j 6= 1 then begin

for i = 1 to k do
begin
(Oai, Obi) ← ChooseObjects(Sj , i)
send (Oai, Obi) together with their new i− 1

components to M1

receive new values for (Oai, Obi) from M1

compute the new ith component, Pi, for
all P ∈ Sj

end
end

else begin
Points ← φ
for i = 1 to k do

begin
(Oa1, Ob1) ← ChooseObjects(S1, i)
Points ← Points ∪ {Oa1, Ob1}
for j = 2 to s do

begin
receive (Oaj , Obj) from Mj along with

their new i− 1 components
Points ← Points ∪ {Oaj , Obj}
end

(Oai, Obi) ← ChooseObjects(Points,i)
for j = 2 to s do

send (Oai, Obi) to Mj

end
end

end

Figure 4: The Iterative Algorithm

the following well-known stress function

stress =

√
ΣP,Q(d′(P, Q)− d0(P,Q))2

ΣP,Qd0(P, Q)2

where d0(P,Q) is the original distance between points
P and Q and d′(P,Q) is the distance between their
images in the new k-dimensional space. We refer the
reader to [1] for a review of stress functions and their
applications.

We performed a variety of experiments, using both
real and synthetic data. We ran our distributed al-
gorithms on different machines by randomly splitting
each data set into s equal parts. Some data sets were
ordered by clustering. Thus random splitting had the
added benefit of ensuring that our results did not un-
intentionally take advantage of pre-computed struc-
tures.

Our results were roughly the same on all inputs.

3

Table 1: Comparison of stress values for three algorithms on data from UC-Irvine repository.

Pendigits Data, Original Dimension d = 16
Reduced s = 1 s = 2 s = 4 s = 8

Dimension Centralized OneTime Iterative OneTime Iterative OneTime Iterative
k = 2 .434 .424 .424 .434 .434 .503 .529
k = 3 .311 .310 .343 .379 .365 .367 .346
k = 4 .271 .240 .235 .262 .264 .321 .224
k = 5 .200 .214 .158 .248 .270 .210 .154

Glass Data, Original Dimension d = 9
Reduced s = 1 s = 2 s = 4 s = 8

Dimension Centralized OneTime Iterative OneTime Iterative OneTime Iterative
k = 2 .479 .479 .479 .475 .468 .475 .479
k = 3 .398 .204 .204 .398 .377 .398 .398
k = 4 .120 .120 .145 .120 .162 .120 .116
k = 5 .045 .035 .037 .041 .028 .045 .044

Wine Data, Original Dimension d = 13
Reduced s = 1 s = 2 s = 4 s = 8

Dimension Centralized OneTime Iterative OneTime Iterative OneTime Iterative
k = 2 .990×10−3 .998×10−3 .990×10−3 .990×10−3 .990×10−3 .990×10−3 .990×10−3

k = 3 .510×10−3 .510×10−3 .510×10−3 .509×10−3 .509×10−3 .509×10−3 .509×10−3

k = 4 .182×10−3 .169×10−3 .199×10−3 .180×10−3 .182×10−3 .182×10−3 .182×10−3

k = 5 .101×10−3 .138×10−3 .166×10−3 .141×10−3 .010×10−3 .101×10−3 .010×10−3

We illustrate with three sets of real data from the
UC-Irvine repository of machine learning databases
and domain theories [9]. From the data available
at this site, we show representative results on the
files Pendigits.data, Glass.data, and Wine.data in Ta-
ble 1.

The tables reported here bear out a common
theme. In all experiments, stress values of both dis-
tributed algorithms remained close to those of the
centralized FastMap. In a few cases, one or the other
version of Distributed FastMap even provided better
results than did Centralized FastMap. The variabil-
ity of the results is likely due to the random choice
of the first point. We fit a simple analysis of variance
model for the effects of k, s, algorithm, and data
set, to the data in Table 1. The analysis of variance
showed only k and data set as significant effects. The
differences in results due to the algorithms and due
to s are smaller than the variation introduced by the
random choice of the initial point by the FastMap
heuristic.

The highly competitive behavior of all three algo-
rithms may be due to the following tradeoffs. Al-
though the Iterative version computes intermediate
projections on each machine on every iteration, the

number of points available at each iteration on the
merger machine is always larger for the OneTime ver-
sion (except on the last iteration, when the number
is the same). Also, both distributed versions get sev-
eral pivot point pairs on the merger machine at each
iteration. Choosing the best of these may outweigh
the disadvantage of not considering all data points at
once.

5 Conclusions

In this paper we present two Distributed FastMap
algorithms for mapping high dimensional objects dis-
tributed across geographically dispersed machines
into points in lower dimensional space, so that dis-
tances between the objects are preserved as much as
possible. Transferring all local data to a central lo-
cation and running the Centralized FastMap would
require O(nd) data transmission, where n is the num-
ber of objects and d is the number of features. Our
Distributed FastMap algorithms require only O(ksd)
data transmission, where s is the number of data lo-
cations and k is the dimensionality of the projected
space. Empirical results on both synthetic and real

4

datasets show that our Distributed FastMap algo-
rithms are competitive in accuracy, sometimes giving
a loss and sometimes some gain, when compared to
the Centralized FastMap.

References

[1] T. F. Cox and M. A. A. Cox. Multidimensional
scaling. Chapman & Hall, Boca Raton, 2001.

[2] C. Faloutsos and K. Lin. FastMap: A fast algo-
rithm for indexing, data-mining and visualization
of traditional and multimedia datasets. In M. J.
Carey and D. A. Schneider, editors, Proceedings
of the 1995 ACM SIGMOD International Confer-
ence on Management of Data, 1995.

[3] H. Hotelling. Analysis of a complex of statisti-
cal variables into principal components. J. Educ.
Psych., 24:417–441,498–520, 1933.

[4] H. Kargupta, W. Huang, K. Sivakumar, and
E. Johnson. Principal component analysis for
dimension reduction in massive distributed data
sets. Knowledge and Information Systems, 3:422–
448, 2001.

[5] J. B. Kruskal. Nonmetric multidimensional scal-
ing: a numerical method. Psychometrica, 29:115–
129, 1964.

[6] J. E. Otoo, A. Shoshani, and S. W. Hwang. Clus-
tering high dimensional massive scientific dataset.
JIIS, 17:147–168, 2001.

[7] Y. Qu, G. Ostrouchov, N.F. Samatova, and
A. Geist. Principal component analysis for dimen-
sion reduction in massive distributed data sets.
In Workshop on High Performance Data Min-
ing at the Second SIAM International Conference
on Data Mining, Washington, DC, page in press,
2002.

[8] W. S. Torgerson. Multidimensional scaling: I.
theory and method. Psychometrica., 17:401–419,
1952.

[9] University of California, Irvine. Repository of ma-
chine learning databases and domain theories. See
http://ics.uci.edu/pub/machine-learning-databases.

5

