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Scientific St mulation

= Explore or Validate Theoretical Models
* Very Small / Very Large Physical Scale
* Actual Experiments Too Dangerous / Not Isolated

—> Alternative to Expensive Physical Prototypes
* Explore Variety of Input Parameters & Datasets

* Large Startup Overhead < Fast Evaluation Cycle
— Platform for Remote Collaboration

* Not Possible with Traditional Experiments

— No Ties to Geographical Site or Facility
— Improved Network Connectivity & Bandwidth...

* Scientists Interact to View & Control Ch1990/2



High-Performance Computing

= Solve More Complex Problems
* Larger Simulation Domains
* Finer Grain / Higher Precision

= Fundamentally Requires Concurrency

* Many Computers Cooperate to Solve One Problem

— Break Problem Into Smaller Sub-Problems
— Divide Simulation Domain Into Subregions

= Special Hardware
* Parallel Computers: SMPs, MPPs
* Clusters of Workstations: Beowulf, PCs (Linux/NT)
* High-Speed Networking: Fast Ethernet, ATM, Gbit
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Programming Models

= Implicit Parallelism:
* Software “Hides” Accesses to Remote Memory
* Tuple Spaces, HPF (High Performance Fortran)

= Explicit Parallelism:
* Programmer Moves Data “On Purpose™
* Message-Passing (PVM, MPI)
— “Locality” ~ Unifying Concept
* Reduce Communication Delays, Improve Perf

* Direct vs. Automated Approach...
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@ Parallel Programming Woes...

— Multiple Computational Threads

— Synchronization, Coordination and Control

= Distributed Data Organization
— Locality, Latency Hiding, Data Movement

— Long-Running Simulation Experiments

— Monitoring, Fault Recovery

— Massive Amounts of Data / Information
— Archival Storage, Visualization

= Too Much Computer, Not Enough Science!
— Need Some Help...
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Need Software Infrastructure for:

= On-The-Fly Visualization
* Interactive Access to Intermediate Results
* Attach as Needed, Minimize Overhead

— Computational Steering
* Apply Visual Feedback to Alter Course / Restart
* Close Loop on Experimentation Cycle

—> Fault Tolerance
* Automatic Fault Recovery / Load Balancing
* Keep Long-Running Simulations Running Long
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(Collaborative, User Migration, User Library for Visualization and Steering)

—> Collaborative Infrastructure for Interacting
with Scientific Simulations:

* Run-Time Visualization by Multiple Viewers
— Dynamic Attachment, Independent Views

* Coordinated Computational Steering
- Model & Algorithm

* Heterogeneous Checkpointing / Fault Tolerance
— Automatic Fault Recovery and Task Migration

* Coupled Models...
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CUMULYVS Visualization Features

— Interactive Visualization
* Simple API for Scientific Visualization

* Use Your Favorite Visualization Tool

— Minimize Overhead when No Viewers
* Application Not Penalized

= Send only Viewed Data

* Partial Array / Lower Resolution

—> Both Field and Particle Data—

— HPF Data Distributions
* BLOCK, CYCLIC, EXPLICIT, COLLAPSE
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Multiple Simultaneous Views

Density Temperature
Kohl-1999/9



Multiple Distinct Views

Custributed Dwta Array

e Clobal View 1

C - spmd. £

amll =twEinit []

aall =stridecompdefine []
aml]l =triffimldd=fioe=|[]

da
call lacalisarlzil

call =:chang=Infoll

amll =strEi=endbcEe[]
whil= | _not .don=l

Cwmulve attache sidetoches viewers
-~ from porallel suonloton, on-the -fly

'
-

- P AvVE

-

~. Remote collabosators
", view diffeient pats of
. mmulaton, amultansonsly

Clobal Wiew 2

Tcli Tk

Instmunent existing parallel

code.

Kohl-1999/10



Instrumenting Simulations

= Initialization ~ stv_1mit( ) / stviinit( )
* Each Task: Logical Name, Number of Tasks

—> Data Fields (Visualization & Checkpointing)
* Data Distribution: Dim, Decomp, PE Topology
* Local Allocation: Name, Type, Offsets

— Steering Parameters
* Name, Type, Reference

= Typically 10s of Lines of Code...
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CUMULYVS Particle Handling

—> Particle Data Fundamentally Different
* Nested Data Fields, Explicit Coordinates
= Particle-Based Decomposition API
* User-Defined, Vectored Accessor Routines
= Viewing Particle Data

* AVS Module Extensions
* Tcl/Tk Slicer Particle Mode
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CUMULYVS

coordinates the consistent collection and dissemination
of information to/from parallel tasks to multiple viewers

local person
using custom remote person

GUI “ using virtual reality
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distributed parallel application or simulation
supports most target platforms (PvM/MPI, Unix/NT, etc.) Kohl.1999/13



Collaborative Combustion Simulation
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CUMULVS J
Steering Features - =

= steering —
— Computational Steering %/

* API for Interactive Application Control
— Modity Parameters While Running

* Eliminate wasteful cycles of ill-posed simulation
* Drive simulation to more interesting solutions

* Enhance convergence of numerical algorithms
— Allows “What If” Explorations

* Closes the loop of standard —

= — visualization > D

simulation cycle

— - _J
==
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* Non-physical effects...

Kohl-1999/15



Coordinated Steering

— Multiple, Remote Collaborators

— Simultaneously Steer Different Parameters
* Physical Parameters of Simulation

* Algorithmic Parameters ~ e.g. Convergence Rate

= Cooperate with Collaborators
* Parameter Locking ~ Prevent Conflicts

* Vectored Parameters...

—> Parallel / Distributed Simulations M

* Synchronize with Parallel Tasks
* All Tasks Update Parameter in Unison
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CUMULYVS Fault Tolerance Features

— Application Fault Tolerance

* Automatic detection and recovery from failures

— User Directed Checkpointing
* User decides what and where to checkpoint
* Minimizes amount of stored data

— Heterogeneous Task Migration
* Tasks can be restarted on heterogeneous hosts

* Restart file 1s automatically repartitioned if host
pool 1s of a different size (yikes!)

— Avoids Synchronizing Distributed Tasks
* Asynchronous checkpointing and detection

* Minimize intrusion of distributed checkpoint/restart .
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Run-Time System Architecture

—> One Checkpointing . i) Machios
Daemon (CPD) Per Host '
* Ckpt Collector / Provider
* Run-Time Monitor
* Console for Restart / Migrate

= CPDs Comprise Fault-
Tolerant Application...
* Handle Failure of Host / CPD
* Coordinate Redundancy Besilacement v
* Ring Topology Mo - °% | SpareHost
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Manual Software Instrumentation

= SPDT 98 Case Study ~ SW Instrumentation Cost

Instrumentation: Seismic: | Wing Flow:
Original Lines of Code 20,632 2,250
Vis / Steer System Init 3 3
Vis / Steer Variable Decls 48 73
CP Restart Initialization 21 12
CP Rollback Handling 41 34
Total Instrumentation 204 ~1.0% | 188 ~7.7%
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Checkpointing Efficiency
= SPDT 98 Case Study ~ Execution Overhead

Seconds per Iteration

Experiment: SGI: | Cluster: | Hetero:

Seismic - No Checkpointing 2.83 6.23 9.46
Seismic - Checkpoint for Restart 2.99 6.50 10.76
Seismic - Checkpoint for Rollback 3.03 6.66 10.90
Wing - No Checkpointing 0.69 1.58 6.14
Wing - Checkpoint for Restart 0.77 1.71 7.10
Wing - Checkpoint for Rollback 0.79 1.71 7.30

(Checkpointing Every 20 Iters.)

Seismic Overhead: 4-14% Restart, +1-3% Rollback.
Wing Overhead: 8-15% Restart, +0-2.5% Rollback.
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PVM (Parallel Virtual Machine)

= Use Arbitrary Collection of Computers as
a Single, Large, Uniform Parallel Computer

* Workstations, PCs (Unix or NT) ~ Clusters

* SMPs, MPPs
* Connected by a Network
— Programming Model & Runtime System
* Message-Passing ~ “Point-to-Point”
* Process Control, Key-Value Database
* Fault Notification
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Virtual Machine Hosts & Spawning
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PVM Tasks ~ Space-Time View

@ ﬂ ﬂ E ﬁ p—pi Tire: 0000000

Trace File: |itmp/pvim.trace Kohl b PlayBack |4 OveriWhite

Hpace - Tiie: Tasks vs. Tine

—
—

Clusel ﬂ%“zu I~ e

Viewr Info:

Computing =2 User Defined Il Overhead [ Waiting [ Message — E

Kohl-1999/23



CUMULVS ~ Fault Tolerance Demo
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Hosts View ~ Fault Tolerance Demo

XPVM 1255 (PYM3.4.1) [TID=0240001]
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PVM vs. MPI: Difterent Goals

— MPI
* Stable Standard, Portable Code.
* High-Performance on Homogeneous Systems.

— PVM

* Research Tool, Robust, Interoperable.

* Good Performance on Heterogeneous Systems.
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PVM vs. MPI: Different Philosophies

— MPI
* Static Model (MPI SPAWN...)
* “Rich” API (MPI-1/ 128, MPI-2 / 288)

* Performance

— PVM

* Dynamic Model

* “Simple” APl (PVM 3.4/ 75)
* Flexibility
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Portability vs. Interoperability

— Portable:

* Re-compile Source Without Modification on a
Different System.

* Both MPI and PVM.
= Interoperable:

* Executables on Different Systems Communicate

* PVM, Sometimes MPI (Standard Doesn’t Require)
* Different MPI Implementations? No Way!
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Language Support

= Write Programs 1in C, Fortran, C++, F90?
* Yes, in Both MPI and PVM.

— Communicate Among Such Programs?
* Yes, in PVM. No Problem.
* MPI? Maybe... Not Required by Standard.

— Getting the Idea? ©
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Scenario 1: Homogeneous Systems

= Interoperability 1s Irrelevant
= MPI

* Best Performance using Optimized Native Comm.

— PVM

* Trades Performance for Flexibility, Unnecessary.

— MPI “Wins”!
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Scenario 2: Heterogeneous Systems

= Typical Situation
* Front-End/Back-End Model.

= PVM
* Transparent Handling by Default, “It Works.”

— MPI
* No Guarantees... Additional Standard Required.
* No Vendor Cooperation? (Performance Loss...)

— PVM “Wins”!
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Performance vs. Flexibility

= To Be Flexible, You Must Pay the Price.
= Overheads:

* Data Conversion, Network Protocol Selection, Extra
Message Headers (on top of Native Comm)...

—> Choose the Common Denominator.
* Not the Best on Any System.

— Performance Dictates Locally Optimal Solution.

* Lose Interoperability.
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Interesting Result

= Someone could build an MPI implementation
that supports interoperability across different
systems / languages.

— But:
* It Would Perform About the Same as PVM!!
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Supporting MPI Applications in CUMULVS

— Vendor-Supported Standard, Growing Application Base
* Selected for ASCI Applications

— MPI Built for High Performance
* Static Model, Minimal Operating Environment

* No Name Service / Database, Fault Recovery / Notification?
* MPI_ SPAWN()...?

— Existing CUMULYVS Solution:

* Applications Communicate Using MPI
* CUMULYVS Viewers/CPDs Attach Using PVM

—> Possible “Reduced-Functionality” MPI Version...?
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But... What About Mpich-G?

= (Globus:
* Provides Rich Operating Environment
* Nexus Communication Substrate

* Duroc Bootstrap & Runtime
* MDS Database Server

— Implement CUMULYVS using Globus

* Short-Circuit to Mpich-G Applications!
* Enhance Globus Toolkit, Other Apps...
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CUMULVS Needs

= Application Discovery

— Dynamic Attachment

— Heterogeneous Messaging
— Fault Notification / Recovery
= [/O ~ Checkpoint Archiving
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Application Discovery

— Independently Started Tasks Find Each Other

— Simulation Tasks Register in Global Server

* Master Task Serves as Proxy for Attachment
* CUMULYVS Viewers Look Up Master
* Master Forwards Attach Requests to Rest of App

— Alternatives:
* Nexus “Allow Attach” ~ URL-Based...
* MDS ~ “Real” Global Meta-Data Server (LDAP)

Kohl-1999/37



Dynamic Attachment

— Multiple Viewers Attach to Same Simulation
* Need Dynamic Communication Setup
— Nexus Startpoint / Endpoint Trading
— Two-Phase Attachment

1. Request List of Simulation Tasks & Info

— Send Viewer Startpoint, Get Back Startpoints from App
— Data Fields & Decompositions, Steering Parameters

2. Request Specific Data Field(s)
— Each Viewer Talks with Proper Subset of Tasks
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Heterogeneous Messaging

— Simulation Tasks Pack & Send Data to Viewer

* “Push” Model (Simulation = Viewer(s))
* Viewers Request Data at Desired Frequency

— Subregion 1in Global Coordinates, Level of Detail
* Viewers Send Steering Updates Asynchronously

* Normal Nexus “Send RSR” Communication

— Flow Control Protocol for Data Frames

* Loose Synchronization
— App Only Blocks at Next Iteration 1f No “XON”...

* Nexus Message Handlers Update Protocol State
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Fault Notification

— All Protoco.

* Survive Fail

s Fault-Tolerant

ures 1n Simulation Tasks or Viewers

* Indirect Fail

lures from Host / Network Crashes

* Viewers Come and Go Without Interfering
- With Each Other or With Simulation Tasks

* Use globus nexus enable fault tolerance( )

—> Fault Notification Messages
* Allow Bail Out from Protocols — But “Who”?

* Don’t Kill Off Remaining Tasks
- Let CUMULVS Handle, No “MPI Genocide” ©

Kohl-1999/40



Fault Recovery...

— Restart Failed Simulation Tasks
* User Can Restart Any Viewers...
* Need Mechanism to Spawn Replacement Tasks

—> Either Restart or Roll Back Remaining Tasks
* Roll Back 1s Elegant, Efficient, and NASTY!
* Restart 1s Simple but EASY ...
* Application Chooses

— Checkpoint Data Sent in Regular Messages

* Program State Automatically Reconciled...
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I/O ~ Checkpoint Archiving

—> Checkpoints Saved to Local Disk
* CPD Per Host Collects From Local Tasks

* Local Checkpoints in Binary Format
— CPDs Translate Using Messaging Substrate (RSR)

—> Parallel File System / Disk Arrays
* Handle Redundancy at Hardware Level?

* Assistance 1n Committing Checkpoints
— Collect & Assemble Individual Task Checkpoints...

* Disk Access ~ Performance Bottleneck
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Future CUMULYVS Plans (1 of 3)
Coupling Data Fields in Simulation Models

— Natural Extension to Viewer Scenario

* Promote “Many-to-1” - “Many-to-Many”

D . _GD

AT A = S NG A

— Translate Disparate Data Decompositions
* Complements PAWS Coupling Work

* Builds on CCA (Common Component Architecture) Forum

E.g. Regional Climate Assessment

G—)
GO

Ocean

G—)

{ cumuLvs > GO
) Temperature ’ Q Q

Atmosphere
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Future CUMULYVS Plans (2 of 3)

Building on Harness

— “Harness” ~ Next Generation H

C Environment

* Pluggable Virtual Machine, Distributed Control

— Follow-on to PVM...

* Inspired by CUMULVS Coupling Needs
* ORNL, UT and Emory (Basic Research)

— Reinforces Need for CCA

* Harness Pluggability Builds on CCA Foundation
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Future CUMULYVS Plans (3 of 3)

= Application Interface:

* Assist Manual Instrumentation of Applications
— QGUI, Pre-Compiler...

= Checkpointing Efficiency:
* Tasks Write Data 1n Parallel / Parallel File System?
* Redundancy Levels, Improve Scalability

—> Portability:

* Other Messaging Substrates
— Nexus, Reduced Functionality for MPI
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CUMULVS Summary

— Interact with Scientific Simulations
* Dynamically Attach Multiple Visualization Front-Ends
* Steer Model & Algorithm Parameters On-The-Fly
* Automatic, Heterogeneous Fault Recovery & Migration
= Future Opportunities
* Couple Disparate Simulation Models
* Integrate with Other Frameworks via CCA

* Application Instrumentation GUI / Pre-Compiler
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Seismic Example ~ 2D (Tcl/Tk)
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Seismic Example ~ 3D (AVS)
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Air Flow Over Wing Example ~ 3D (AVS)
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