Interacting with High-Performance Scientific

Simulations using CUMULVS:

Visualization, Computational Steering,
and Fault Tolerance

Dr. James Arthur Kohl
Oak Ridge National Laboratory
Oak Ridge, Tennessee

October 7, 1999

Research sponsored by the Applied Mathematical Sciences Research Program, Office of Mathematical, Information, and Computer Kohl-1999/1
Sciences, U.S. Department of Energy, under contract No. DE-AC05-960R22464 with Lockheed Martin Energy Research Corporation.

Scientific St mulation

= Explore or Validate Theoretical Models
* Very Small / Very Large Physical Scale
* Actual Experiments Too Dangerous / Not Isolated

—> Alternative to Expensive Physical Prototypes
* Explore Variety of Input Parameters & Datasets

* Large Startup Overhead < Fast Evaluation Cycle
— Platform for Remote Collaboration

* Not Possible with Traditional Experiments

— No Ties to Geographical Site or Facility
— Improved Network Connectivity & Bandwidth...

* Scientists Interact to View & Control Ch1990/2

High-Performance Computing

= Solve More Complex Problems
* Larger Simulation Domains
* Finer Grain / Higher Precision

= Fundamentally Requires Concurrency

* Many Computers Cooperate to Solve One Problem

— Break Problem Into Smaller Sub-Problems
— Divide Simulation Domain Into Subregions

= Special Hardware
* Parallel Computers: SMPs, MPPs
* Clusters of Workstations: Beowulf, PCs (Linux/NT)
* High-Speed Networking: Fast Ethernet, ATM, Gbit

Kohl-1999/3

Programming Models

= Implicit Parallelism:
* Software “Hides” Accesses to Remote Memory
* Tuple Spaces, HPF (High Performance Fortran)

= Explicit Parallelism:
* Programmer Moves Data “On Purpose™
* Message-Passing (PVM, MPI)
— “Locality” ~ Unifying Concept
* Reduce Communication Delays, Improve Perf

* Direct vs. Automated Approach...

Kohl-1999/4

@ Parallel Programming Woes...

— Multiple Computational Threads

— Synchronization, Coordination and Control

= Distributed Data Organization
— Locality, Latency Hiding, Data Movement

— Long-Running Simulation Experiments

— Monitoring, Fault Recovery

— Massive Amounts of Data / Information
— Archival Storage, Visualization

= Too Much Computer, Not Enough Science!
— Need Some Help...

Kohl-1999/5

Need Software Infrastructure for:

= On-The-Fly Visualization
* Interactive Access to Intermediate Results
* Attach as Needed, Minimize Overhead

— Computational Steering
* Apply Visual Feedback to Alter Course / Restart
* Close Loop on Experimentation Cycle

—> Fault Tolerance
* Automatic Fault Recovery / Load Balancing
* Keep Long-Running Simulations Running Long

Kohl-1999/6

(Collaborative, User Migration, User Library for Visualization and Steering)

—> Collaborative Infrastructure for Interacting
with Scientific Simulations:

* Run-Time Visualization by Multiple Viewers
— Dynamic Attachment, Independent Views

* Coordinated Computational Steering
- Model & Algorithm

* Heterogeneous Checkpointing / Fault Tolerance
— Automatic Fault Recovery and Task Migration

* Coupled Models...

Kohl-1999/7

CUMULYVS Visualization Features

— Interactive Visualization
* Simple API for Scientific Visualization

* Use Your Favorite Visualization Tool

— Minimize Overhead when No Viewers
* Application Not Penalized

= Send only Viewed Data

* Partial Array / Lower Resolution

—> Both Field and Particle Data—

— HPF Data Distributions
* BLOCK, CYCLIC, EXPLICIT, COLLAPSE

Kohl-1999/8

Multiple Simultaneous Views

Density Temperature
Kohl-1999/9

Multiple Distinct Views

Custributed Dwta Array

e Clobal View 1

C - spmd. £

amll =twEinit []

aall =stridecompdefine []
aml]l =triffimldd=fioe=|[]

da
call lacalisarlzil

call =:chang=Infoll

amll =strEi=endbcEe[]
whil= | _not .don=l

Cwmulve attache sidetoches viewers
-~ from porallel suonloton, on-the -fly

'
-

- P AvVE

-

~. Remote collabosators
", view diffeient pats of
. mmulaton, amultansonsly

Clobal Wiew 2

Tcli Tk

Instmunent existing parallel

code.

Kohl-1999/10

Instrumenting Simulations

= Initialization ~ stv_1mit() / stviinit()
* Each Task: Logical Name, Number of Tasks

—> Data Fields (Visualization & Checkpointing)
* Data Distribution: Dim, Decomp, PE Topology
* Local Allocation: Name, Type, Offsets

— Steering Parameters
* Name, Type, Reference

= Typically 10s of Lines of Code...

Kohl-1999/11

CUMULYVS Particle Handling

—> Particle Data Fundamentally Different
* Nested Data Fields, Explicit Coordinates
= Particle-Based Decomposition API
* User-Defined, Vectored Accessor Routines
= Viewing Particle Data

* AVS Module Extensions
* Tcl/Tk Slicer Particle Mode

Kohl-1999/12

CUMULYVS

coordinates the consistent collection and dissemination
of information to/from parallel tasks to multiple viewers

local person
using custom remote person

GUI “ using virtual reality
:;;::I{;',-ﬁ?""l interface

/

taskjl | I
Unix Host C flesgln;tz gfesl‘son

exists in three pieces:
task part, viewer part,
and separate fault
recovery daemon

Unix Host A

NT Host B

distributed parallel application or simulation
supports most target platforms (PvM/MPI, Unix/NT, etc.) Kohl.1999/13

Collaborative Combustion Simulation

Methana Flame e
"B

P Rtmma ‘Stﬂ*ﬁﬂﬂﬂ

1% L thesimulation

ro e
&L i g o .Hll-:'-.'- Rernole Experts to Yiew and Inflience
) | & o N
|

_ rfl'l'rl'lt l-l'l'l'l.lli'lr'l'l'l £ Irurﬂhn-_: ".il'Illi‘l'l'l"l'l!- ;
* ILhose the [oop on simulate=revise=simubaie q'-:'l-z

- g | : | Al TIENRIRCE COvAEr Qence of r-umm::uu-gml.hm e
ml“:'"ﬁ AL ': k| : | =it . peols i B falvoid wasEing companler IS ources on uﬂln.'lcrc urrg:
'Human and |) - . . N o Incofrect exper ments
Physical Resources of = e :
Multiplt DOE l.abnratmies

Collaborative Yiewing and Steering Enabieﬁ “What if?" £nmputatmnal Science

Kohl-1999/14

CUMULVS J
Steering Features - =

= steering —
— Computational Steering %/

* API for Interactive Application Control
— Modity Parameters While Running

* Eliminate wasteful cycles of ill-posed simulation
* Drive simulation to more interesting solutions

* Enhance convergence of numerical algorithms
— Allows “What If” Explorations

* Closes the loop of standard —

= — visualization > D

simulation cycle

— - _J
==
=

W }
-

* Non-physical effects...

Kohl-1999/15

Coordinated Steering

— Multiple, Remote Collaborators

— Simultaneously Steer Different Parameters
* Physical Parameters of Simulation

* Algorithmic Parameters ~ e.g. Convergence Rate

= Cooperate with Collaborators
* Parameter Locking ~ Prevent Conflicts

* Vectored Parameters...

—> Parallel / Distributed Simulations M

* Synchronize with Parallel Tasks
* All Tasks Update Parameter in Unison

Kohl-1999/16

CUMULYVS Fault Tolerance Features

— Application Fault Tolerance

* Automatic detection and recovery from failures

— User Directed Checkpointing
* User decides what and where to checkpoint
* Minimizes amount of stored data

— Heterogeneous Task Migration
* Tasks can be restarted on heterogeneous hosts

* Restart file 1s automatically repartitioned if host
pool 1s of a different size (yikes!)

— Avoids Synchronizing Distributed Tasks
* Asynchronous checkpointing and detection

* Minimize intrusion of distributed checkpoint/restart .
Kohl-1999/17

Run-Time System Architecture

—> One Checkpointing . i) Machios
Daemon (CPD) Per Host '
* Ckpt Collector / Provider
* Run-Time Monitor
* Console for Restart / Migrate

= CPDs Comprise Fault-
Tolerant Application...
* Handle Failure of Host / CPD
* Coordinate Redundancy Besilacement v
* Ring Topology Mo - °% | SpareHost

Kohl-1999/18

Manual Software Instrumentation

= SPDT 98 Case Study ~ SW Instrumentation Cost

Instrumentation: Seismic: | Wing Flow:
Original Lines of Code 20,632 2,250
Vis / Steer System Init 3 3
Vis / Steer Variable Decls 48 73
CP Restart Initialization 21 12
CP Rollback Handling 41 34
Total Instrumentation 204 ~1.0% | 188 ~7.7%

Kohl-1999/19

Checkpointing Efficiency
= SPDT 98 Case Study ~ Execution Overhead

Seconds per Iteration

Experiment: SGI: | Cluster: | Hetero:

Seismic - No Checkpointing 2.83 6.23 9.46
Seismic - Checkpoint for Restart 2.99 6.50 10.76
Seismic - Checkpoint for Rollback 3.03 6.66 10.90
Wing - No Checkpointing 0.69 1.58 6.14
Wing - Checkpoint for Restart 0.77 1.71 7.10
Wing - Checkpoint for Rollback 0.79 1.71 7.30

(Checkpointing Every 20 Iters.)

Seismic Overhead: 4-14% Restart, +1-3% Rollback.
Wing Overhead: 8-15% Restart, +0-2.5% Rollback.

Kohl-1999/20

PVM (Parallel Virtual Machine)

= Use Arbitrary Collection of Computers as
a Single, Large, Uniform Parallel Computer

* Workstations, PCs (Unix or NT) ~ Clusters

* SMPs, MPPs
* Connected by a Network
— Programming Model & Runtime System
* Message-Passing ~ “Point-to-Point”
* Process Control, Key-Value Database
* Fault Notification

Kohl-1999/21

Virtual Machine Hosts & Spawning

XPYH 1.25+ (PYM3.41) [TID=0x40001]

Status: XPVM Views Resel Done.
|

File...| Hosts.... Views... Options...|
Metwiork View

Clusel Active . System |_ Mo Tasks |_ Het Key

o « = D > » Time: 0.000000

Trace File: |ftmp/xpvm.trace. kohl |, PlayBack |4 OverVite

Kohl-1999/22

PVM Tasks ~ Space-Time View

@ ﬂ ﬂ E ﬁ p—pi Tire: 0000000

Trace File: |itmp/pvim.trace Kohl b PlayBack |4 OveriWhite

Hpace - Tiie: Tasks vs. Tine

—
—

Clusel ﬂ%“zu I~ e

Viewr Info:

Computing =2 User Defined Il Overhead [Waiting [Message — E

Kohl-1999/23

CUMULVS ~ Fault Tolerance Demo

E ﬂ; E El W ﬂl Tine; 0.0000504

| Trace fle: |fimpipvim trace. kohd v MayBack [4 OverWnte

Space- Thae; Tasks vs. Tine

| coe| FHFHp ™ =

Viewr Info:

Computing [User Defined N Overhead Waiting [Message — E

Kohl-1999/24

Hosts View ~ Fault Tolerance Demo

XPVM 1255 (PYM3.4.1) [TID=0240001]

Options....

P L--'

Clusel Active . System _ Mo Tasks |_ MHet Key

E] | - M |—[> ﬁ‘ Time: 0.000000

Trace File: [ftmpixpvm.trace kohl |~ PlayBack | OverWrite

Kohl-1999/25

PVM vs. MPI: Difterent Goals

— MPI
* Stable Standard, Portable Code.
* High-Performance on Homogeneous Systems.

— PVM

* Research Tool, Robust, Interoperable.

* Good Performance on Heterogeneous Systems.

Kohl-1999/26

PVM vs. MPI: Different Philosophies

— MPI
* Static Model (MPI SPAWN...)
* “Rich” API (MPI-1/ 128, MPI-2 / 288)

* Performance

— PVM

* Dynamic Model

* “Simple” APl (PVM 3.4/ 75)
* Flexibility

Kohl-1999/27

Portability vs. Interoperability

— Portable:

* Re-compile Source Without Modification on a
Different System.

* Both MPI and PVM.
= Interoperable:

* Executables on Different Systems Communicate

* PVM, Sometimes MPI (Standard Doesn’t Require)
* Different MPI Implementations? No Way!

Kohl-1999/28

Language Support

= Write Programs 1in C, Fortran, C++, F90?
* Yes, in Both MPI and PVM.

— Communicate Among Such Programs?
* Yes, in PVM. No Problem.
* MPI? Maybe... Not Required by Standard.

— Getting the Idea? ©

Kohl-1999/29

Scenario 1: Homogeneous Systems

= Interoperability 1s Irrelevant
= MPI

* Best Performance using Optimized Native Comm.

— PVM

* Trades Performance for Flexibility, Unnecessary.

— MPI “Wins”!

Kohl-1999/30

Scenario 2: Heterogeneous Systems

= Typical Situation
* Front-End/Back-End Model.

= PVM
* Transparent Handling by Default, “It Works.”

— MPI
* No Guarantees... Additional Standard Required.
* No Vendor Cooperation? (Performance Loss...)

— PVM “Wins”!

Kohl-1999/31

Performance vs. Flexibility

= To Be Flexible, You Must Pay the Price.
= Overheads:

* Data Conversion, Network Protocol Selection, Extra
Message Headers (on top of Native Comm)...

—> Choose the Common Denominator.
* Not the Best on Any System.

— Performance Dictates Locally Optimal Solution.

* Lose Interoperability.

Kohl-1999/32

Interesting Result

= Someone could build an MPI implementation
that supports interoperability across different
systems / languages.

— But:
* It Would Perform About the Same as PVM!!

Kohl-1999/33

Supporting MPI Applications in CUMULVS

— Vendor-Supported Standard, Growing Application Base
* Selected for ASCI Applications

— MPI Built for High Performance
* Static Model, Minimal Operating Environment

* No Name Service / Database, Fault Recovery / Notification?
* MPI_ SPAWN()...?

— Existing CUMULYVS Solution:

* Applications Communicate Using MPI
* CUMULYVS Viewers/CPDs Attach Using PVM

—> Possible “Reduced-Functionality” MPI Version...?

Kohl-1999/34

But... What About Mpich-G?

= (Globus:
* Provides Rich Operating Environment
* Nexus Communication Substrate

* Duroc Bootstrap & Runtime
* MDS Database Server

— Implement CUMULYVS using Globus

* Short-Circuit to Mpich-G Applications!
* Enhance Globus Toolkit, Other Apps...

Kohl-1999/35

CUMULVS Needs

= Application Discovery

— Dynamic Attachment

— Heterogeneous Messaging
— Fault Notification / Recovery
= [/O ~ Checkpoint Archiving

Kohl-1999/36

Application Discovery

— Independently Started Tasks Find Each Other

— Simulation Tasks Register in Global Server

* Master Task Serves as Proxy for Attachment
* CUMULYVS Viewers Look Up Master
* Master Forwards Attach Requests to Rest of App

— Alternatives:
* Nexus “Allow Attach” ~ URL-Based...
* MDS ~ “Real” Global Meta-Data Server (LDAP)

Kohl-1999/37

Dynamic Attachment

— Multiple Viewers Attach to Same Simulation
* Need Dynamic Communication Setup
— Nexus Startpoint / Endpoint Trading
— Two-Phase Attachment

1. Request List of Simulation Tasks & Info

— Send Viewer Startpoint, Get Back Startpoints from App
— Data Fields & Decompositions, Steering Parameters

2. Request Specific Data Field(s)
— Each Viewer Talks with Proper Subset of Tasks

Kohl-1999/38

Heterogeneous Messaging

— Simulation Tasks Pack & Send Data to Viewer

* “Push” Model (Simulation = Viewer(s))
* Viewers Request Data at Desired Frequency

— Subregion 1in Global Coordinates, Level of Detail
* Viewers Send Steering Updates Asynchronously

* Normal Nexus “Send RSR” Communication

— Flow Control Protocol for Data Frames

* Loose Synchronization
— App Only Blocks at Next Iteration 1f No “XON”...

* Nexus Message Handlers Update Protocol State

Kohl-1999/39

Fault Notification

— All Protoco.

* Survive Fail

s Fault-Tolerant

ures 1n Simulation Tasks or Viewers

* Indirect Fail

lures from Host / Network Crashes

* Viewers Come and Go Without Interfering
- With Each Other or With Simulation Tasks

* Use globus nexus enable fault tolerance()

—> Fault Notification Messages
* Allow Bail Out from Protocols — But “Who”?

* Don’t Kill Off Remaining Tasks
- Let CUMULVS Handle, No “MPI Genocide” ©

Kohl-1999/40

Fault Recovery...

— Restart Failed Simulation Tasks
* User Can Restart Any Viewers...
* Need Mechanism to Spawn Replacement Tasks

—> Either Restart or Roll Back Remaining Tasks
* Roll Back 1s Elegant, Efficient, and NASTY!
* Restart 1s Simple but EASY ...
* Application Chooses

— Checkpoint Data Sent in Regular Messages

* Program State Automatically Reconciled...

Kohl-1999/41

I/O ~ Checkpoint Archiving

—> Checkpoints Saved to Local Disk
* CPD Per Host Collects From Local Tasks

* Local Checkpoints in Binary Format
— CPDs Translate Using Messaging Substrate (RSR)

—> Parallel File System / Disk Arrays
* Handle Redundancy at Hardware Level?

* Assistance 1n Committing Checkpoints
— Collect & Assemble Individual Task Checkpoints...

* Disk Access ~ Performance Bottleneck

Kohl-1999/42

Future CUMULYVS Plans (1 of 3)
Coupling Data Fields in Simulation Models

— Natural Extension to Viewer Scenario

* Promote “Many-to-1” - “Many-to-Many”

D . _GD

AT A = S NG A

— Translate Disparate Data Decompositions
* Complements PAWS Coupling Work

* Builds on CCA (Common Component Architecture) Forum

E.g. Regional Climate Assessment

G—)
GO

Ocean

G—)

{ cumuLvs > GO
) Temperature ’ Q Q

Atmosphere

Kohl-1999/43

Future CUMULYVS Plans (2 of 3)

Building on Harness

— “Harness” ~ Next Generation H

C Environment

* Pluggable Virtual Machine, Distributed Control

— Follow-on to PVM...

* Inspired by CUMULVS Coupling Needs
* ORNL, UT and Emory (Basic Research)

— Reinforces Need for CCA

* Harness Pluggability Builds on CCA Foundation

Kohl-1999/44

Future CUMULYVS Plans (3 of 3)

= Application Interface:

* Assist Manual Instrumentation of Applications
— QGUI, Pre-Compiler...

= Checkpointing Efficiency:
* Tasks Write Data 1n Parallel / Parallel File System?
* Redundancy Levels, Improve Scalability

—> Portability:

* Other Messaging Substrates
— Nexus, Reduced Functionality for MPI

Kohl-1999/45

CUMULVS Summary

— Interact with Scientific Simulations
* Dynamically Attach Multiple Visualization Front-Ends
* Steer Model & Algorithm Parameters On-The-Fly
* Automatic, Heterogeneous Fault Recovery & Migration
= Future Opportunities
* Couple Disparate Simulation Models
* Integrate with Other Frameworks via CCA

* Application Instrumentation GUI / Pre-Compiler

Kohl-1999/46

Seismic Example ~ 2D (Tcl/Tk)

Kohl-1999/47

Seismic Example ~ 3D (AVS)

Kohl-1999/48

Air Flow Over Wing Example ~ 3D (AVS)

Kohl-1999/49

	Interacting with High-Performance Scientific Simulations using CUMULVS:Visualization, Computational Steering, and Fault T
	Scientific Simulation
	High-Performance Computing
	Programming Models
	Parallel Programming Woes…
	Need Software Infrastructure for:
	CUMULVS Visualization Features
	Multiple Simultaneous Views
	Multiple Distinct Views
	Instrumenting Simulations
	CUMULVS Particle Handling
	CUMULVScoordinates the consistent collection and disseminationof information to/from parallel tasks to multiple viewers
	Collaborative Combustion Simulation
	CUMULVSSteering Features
	Coordinated Steering
	CUMULVS Fault Tolerance Features
	Run-Time System Architecture
	Manual Software Instrumentation
	Checkpointing Efficiency
	PVM (Parallel Virtual Machine)
	Virtual Machine Hosts & Spawning
	PVM Tasks ~ Space-Time View
	CUMULVS ~ Fault Tolerance Demo
	Hosts View ~ Fault Tolerance Demo
	PVM vs. MPI: Different Goals
	PVM vs. MPI: Different Philosophies
	Portability vs. Interoperability
	Language Support
	Scenario 1: Homogeneous Systems
	Scenario 2: Heterogeneous Systems
	Performance vs. Flexibility
	Interesting Result
	Supporting MPI Applications in CUMULVS
	But… What About Mpich-G?
	CUMULVS Needs
	Application Discovery
	Dynamic Attachment
	Heterogeneous Messaging
	Fault Notification
	Fault Recovery…
	I/O ~ Checkpoint Archiving
	Future CUMULVS Plans (1 of 3)Coupling Data Fields in Simulation Models
	Future CUMULVS Plans (2 of 3) Building on Harness
	Future CUMULVS Plans (3 of 3)
	CUMULVS Summary
	Seismic Example ~ 2D (Tcl/Tk)
	Seismic Example ~ 3D (AVS)
	Air Flow Over Wing Example ~ 3D (AVS)

