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The Often Overlooked Duality...

* What 1s “Collective” Really?

—> Dealing with Parallel Components
—> Coupling Disparate Parallel Models

—> Interfacing to Serial Components

* Two Sides:
—> Parallel Data Exchange

— Parallel Method Invocation

* These are Distinct Issues
—> Need to be Handled Separately
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The Big Picture

 Interfacing Parallel Components:

— Exchanging and Extracting Data
— MxN Data Translation

— Other Convolutions: Grid, Temporal, Units...
* QOutside of Parallel Paradigm, But Required & Related...

= Invoking Methods on Parallel Components
— Selective / Multiple Invocations
— Passing Arguments / Returning Value(s)...

e Common Issues
—> Synchronization & Scheduling
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Parallel Port Interface
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Integrated MxN Port Interface

(No More coupleDataFields( )...)

class MxN : Port {
virtual void registerData( Data A );
virtual void unregisterData( Data A );
// (Data Properties: synch)
virtual int getData( Data A, Data B );
virtual int getDataNonBlocking( A, B );
virtual void waitData( A, B );
virtual void releaseData( A, B );

// Port Properties: freq, init synch, run synch...
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MxN Port Properties

* Freq ~ Data Exchange Frequency

= (: one-shot, send/recerve model (PAWS)

= > 0: persistent conn, loose synch (CUMULVS)
* Init Synch ~ Override Initial Default Synch

—> Parallel Data Object Sets “synch™ Required
 Run Synch ~ Optimize Run-Time Synch

—> Maintain Synch with All Parallel Tasks, versus

— Just Maintain Synch with Relevant Tasks
— Trade Off (Re)Attachment vs. Persistent Overhead...
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What About “DataFields’?

* Leave 1t to the Data Object Interfaces...

 MxN can use generic info from:
= Distributed Data Decompositions

= Processor Topology & Allocation

— Mesh / Grid Type
= Data Field Times & Periods
= setReady( )
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Parallel Invocation Multiplexer
(MUX)

 Coordinates Invocations of Methods on
Parallel Components

— Intermediary Component Schedules Calls

/
foo( ) —

foo; ()
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Possible MUX Interfaces...

* mvokeAll( “foo”, args, ..., results??? );
—> Call Method on Each Parallel Instance
—> Pass Scalar or Parallel (Indexed) Arguments?
= Vector of Results Collected & Returned?
* 1mnvokeOne( “foo0”, ... );
= Select One Instance to Execute Method
—> Use Port Properties for Selection Policy?
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MUX Synchronization
(invokeAll( ) Only)

* Does the Parallel Invocation Cooperate?

— Require Full / Loose Synchronization Among
Parallel Instances?

— Communication Among Instances in “foo( )” ?

—> Data Consistency Across Invocations?

* Invocation Order / Servicing Multiple Requests

= Interleave Different Invocations? Policy...

* Results Reductions
— Produce Single Result from Many ~ Voting?
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One More Can of Worms...!

* Explicit versus Implicit Parallel Port Handling
= Both Approaches Desirable

—> Both Interfaces Utilize the Same Underlying
Implementation

* Several Approaches:
— SIDL / Babel (next up — Gary ©)

— Pluggable Framework Services...
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Pluggable Framework Services

e Instantiate Alternate “Handlers” at Run Time
e Implicit MxN / MUX:

— Need “Method Invocation Handler” Interface

= Intercept Invocations on Ports
— Insert Automatic MxN Data Extraction for Arguments

— Event-Based or Not?
— Services—2>addHandler( “Invocation”, MxN-2>handle( ) );

* Likely Other Uses / Pluggable Services
— Improves Portability / Eases Framework Dvlpmt
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Summary

* Separate Concerns:
— MxN Interface ~ Parallel Data Exchange
— MUX Interface ~ Parallel Method Invocation

« Simplify Interfaces = Rely on Data Objects
* Pluggable Framework Services?
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