MUX and MxN: A Revelation...

(a.k.a. “Collective 1s Dead? :-0)

James Arthur Kohl
David E. Bernholdt
Oak Ridge National Laboratory

Thursday, December 7, 2000

(a date which will live in infamy...?)

Research supported by the Mathematics, Information and Computational Sciences Office, Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under contract No. DE-AC05-000R22725 with UT-Battelle, LLC.

ORNL Kohl/2000-1

The Often Overlooked Duality...

* What 1s “Collective” Really?

—> Dealing with Parallel Components
—> Coupling Disparate Parallel Models

—> Interfacing to Serial Components

* Two Sides:
—> Parallel Data Exchange

— Parallel Method Invocation

* These are Distinct Issues
—> Need to be Handled Separately

ORNL Kohl/2000-2

The Big Picture

 Interfacing Parallel Components:

— Exchanging and Extracting Data
— MxN Data Translation

— Other Convolutions: Grid, Temporal, Units...
* QOutside of Parallel Paradigm, But Required & Related...

= Invoking Methods on Parallel Components
— Selective / Multiple Invocations
— Passing Arguments / Returning Value(s)...

e Common Issues
—> Synchronization & Scheduling

ORNL Kohl/2000-3

Parallel Port Interface

ORNL Kohl/2000-4

Integrated MxN Port Interface

(No More coupleDataFields()...)

class MxN : Port {
virtual void registerData(Data A);
virtual void unregisterData(Data A);
// (Data Properties: synch)
virtual int getData(Data A, Data B);
virtual int getDataNonBlocking(A, B);
virtual void waitData(A, B);
virtual void releaseData(A, B);

// Port Properties: freq, init synch, run synch...

} Kohl/2000-5

MxN Port Properties

* Freq ~ Data Exchange Frequency

= (: one-shot, send/recerve model (PAWS)

= > 0: persistent conn, loose synch (CUMULVS)
* Init Synch ~ Override Initial Default Synch

—> Parallel Data Object Sets “synch™ Required
 Run Synch ~ Optimize Run-Time Synch

—> Maintain Synch with All Parallel Tasks, versus

— Just Maintain Synch with Relevant Tasks
— Trade Off (Re)Attachment vs. Persistent Overhead...

ORNL Kohl/2000-6

What About “DataFields’?

* Leave 1t to the Data Object Interfaces...

 MxN can use generic info from:
= Distributed Data Decompositions

= Processor Topology & Allocation

— Mesh / Grid Type
= Data Field Times & Periods
= setReady()

ORNL Kohl/2000-7

Parallel Invocation Multiplexer
(MUX)

 Coordinates Invocations of Methods on
Parallel Components

— Intermediary Component Schedules Calls

/
foo() —

foo; ()

ORNL Kohl/2000-8

Possible MUX Interfaces...

* mvokeAll(“foo”, args, ..., results???);
—> Call Method on Each Parallel Instance
—> Pass Scalar or Parallel (Indexed) Arguments?
= Vector of Results Collected & Returned?
* 1mnvokeOne(“foo0”, ...);
= Select One Instance to Execute Method
—> Use Port Properties for Selection Policy?

ORNL Kohl/2000-9

MUX Synchronization
(invokeAll() Only)

* Does the Parallel Invocation Cooperate?

— Require Full / Loose Synchronization Among
Parallel Instances?

— Communication Among Instances in “foo()” ?

—> Data Consistency Across Invocations?

* Invocation Order / Servicing Multiple Requests

= Interleave Different Invocations? Policy...

* Results Reductions
— Produce Single Result from Many ~ Voting?

ORNL Kohl/2000-10

One More Can of Worms...!

* Explicit versus Implicit Parallel Port Handling
= Both Approaches Desirable

—> Both Interfaces Utilize the Same Underlying
Implementation

* Several Approaches:
— SIDL / Babel (next up — Gary ©)

— Pluggable Framework Services...

ORNL Kohl/2000-11

Pluggable Framework Services

e Instantiate Alternate “Handlers” at Run Time
e Implicit MxN / MUX:

— Need “Method Invocation Handler” Interface

= Intercept Invocations on Ports
— Insert Automatic MxN Data Extraction for Arguments

— Event-Based or Not?
— Services—2>addHandler(“Invocation”, MxN-2>handle());

* Likely Other Uses / Pluggable Services
— Improves Portability / Eases Framework Dvlpmt

ORNL Kohl/2000-12

Summary

* Separate Concerns:
— MxN Interface ~ Parallel Data Exchange
— MUX Interface ~ Parallel Method Invocation

« Simplify Interfaces = Rely on Data Objects
* Pluggable Framework Services?

ORNL Kohl/2000-13

	MUX and MxN: A Revelation…(a.k.a. “Collective” is Dead? :-o)
	The Often Overlooked Duality…
	The Big Picture
	Parallel Port Interface
	Integrated MxN Port Interface(No More coupleDataFields()…)
	MxN Port Properties
	What About “DataFields”?
	Parallel Invocation Multiplexer (MUX)
	Possible MUX Interfaces…
	MUX Synchronization(invokeAll() Only)
	One More Can of Worms…!
	Pluggable Framework Services
	Summary

