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GIST: Genomic Integrated
Supercomputing Toolkit

Home-Grown Component-Based Environment
Assemble & “Schedule” Genomic Tasks

— E.g. Protein Matching, etc...
Runs on IBM SP, Linux Clusters

Life Sciences Division, ORNL
—> Phil Locascio

Kohl/2000-2



GIST Model

* Transaction System
= Stateless Components, a la “Data Filters”...
— Similar to Data Flow Model
— Tuple Space: ( Application, Data, Epoch/Time )

* Queries Submitted as Component Graphs

= Encapsulated Functionality per Supercomputer

— Minimize Data Movement

— Pre-Execution Configuration of Components
— Resource Requirements

— Time / Data Dependencies
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Resource Requirements

* Component Specifies Resource Needs
— Before Instantiation...

— Framework Adds Resources on Demand

— Only When Component 1s Otherwise
“Ready” to Run...
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Time / Data Dependencies

» Typical Data Flow Synchronization

—> Pass Results Along Connection Pipeline

* Time Dependent Data / Results
= Invalidate Expired Information

— Automatically Re-Trigger Computation
Pipeline to Re-Generate Results...
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GIST Needs From CCA

Naming Space
Events
Dependencies

Component Interfacing — Data Description

Recursive / Nested Components
Fault Tolerance
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Naming Space(s)

* For Basic Component Interaction
—> Assistance in Locating / Identification
— Components & Ports
* Organization of Components
— Domains, Nested Hierarchies?

= Constructing Dependencies?
— Referencing Components for Data Flow

— Specifying Resource Requirements
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Events

* To Trigger Dependencies:
— “Data Ready” Along Data Flow Paths
= Expiration Timers for Result (In)Validity

— Resource Dynamics
— New Resources Added
- Fault Notification

* For Other Component Synchronization?
= Else Just Use MPI/ PVM...
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Dependencies

* Framework Provide Dependency Triggers?

— Additional Framework Service

— Eases Complex Component Integration

— Component Instantiation Handled by Framework
* Formalize Resource Management?

— Pragmatic Issue...

—> Necessary Evil or Taboo to be Avoided?
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Component Interfacing
(In “Real” Life)

« “Real” Component (Port) Compatibility
= Not Just Data Types (Raw or Complex)
= More like PROTOCOLS... -0

 Generalize Port Data Interface
— XML?

 Component Developers Need Help Here!
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Recursive / Nested Components

* Generally Useful
* Sign of a Good Component Model...

e For GIST:

= Compose Components Within SC / Cluster
= Compose SCs / Clusters...
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Fault Tolerance

* Don’t “Leave” to the Component Developer!

* Need Base Infrastructure in CCA Framework
= Within Components — Exceptions
= Across Components — Failure Events
— Resource / Network Crash Recovery
= High-Level Checkpointing?
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Summary

e GIST — Genomic Integrated Supercomputing Toolkit
 CCA Needs:

— Naming Space

— Events

— Dependencies

— Component Interfacing — Data Description

= Recursive / Nested Components

= Fault Tolerance
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