CCA & GINT:

Genomic Integrated
Supercomputing Toolkit

Jeeembo Kohl
Oak Ridge National Laboratory

March 3, 2000

Research supported by the Mathematics, Information and Computational Sciences Office, Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under contract No. DE-AC05-000R22725 with UT-Battelle, LLC.

Kohl/2000-1

GIST: Genomic Integrated
Supercomputing Toolkit

Home-Grown Component-Based Environment
Assemble & “Schedule” Genomic Tasks

— E.g. Protein Matching, etc...
Runs on IBM SP, Linux Clusters

Life Sciences Division, ORNL
—> Phil Locascio

Kohl/2000-2

GIST Model

* Transaction System
= Stateless Components, a la “Data Filters”...
— Similar to Data Flow Model
— Tuple Space: (Application, Data, Epoch/Time)

* Queries Submitted as Component Graphs

= Encapsulated Functionality per Supercomputer

— Minimize Data Movement

— Pre-Execution Configuration of Components
— Resource Requirements

— Time / Data Dependencies
Kohl/2000-3

Resource Requirements

* Component Specifies Resource Needs
— Before Instantiation...

— Framework Adds Resources on Demand

— Only When Component 1s Otherwise
“Ready” to Run...

Kohl/2000-4

Time / Data Dependencies

» Typical Data Flow Synchronization

—> Pass Results Along Connection Pipeline

* Time Dependent Data / Results
= Invalidate Expired Information

— Automatically Re-Trigger Computation
Pipeline to Re-Generate Results...

Kohl/2000-5

GIST Needs From CCA

Naming Space
Events
Dependencies

Component Interfacing — Data Description

Recursive / Nested Components
Fault Tolerance

Kohl/2000-6

Naming Space(s)

* For Basic Component Interaction
—> Assistance in Locating / Identification
— Components & Ports
* Organization of Components
— Domains, Nested Hierarchies?

= Constructing Dependencies?
— Referencing Components for Data Flow

— Specifying Resource Requirements

Kohl/2000-7

Events

* To Trigger Dependencies:
— “Data Ready” Along Data Flow Paths
= Expiration Timers for Result (In)Validity

— Resource Dynamics
— New Resources Added
- Fault Notification

* For Other Component Synchronization?
= Else Just Use MPI/ PVM...

Kohl/2000-8

Dependencies

* Framework Provide Dependency Triggers?

— Additional Framework Service

— Eases Complex Component Integration

— Component Instantiation Handled by Framework
* Formalize Resource Management?

— Pragmatic Issue...

—> Necessary Evil or Taboo to be Avoided?

Kohl/2000-9

Component Interfacing
(In “Real” Life)

« “Real” Component (Port) Compatibility
= Not Just Data Types (Raw or Complex)
= More like PROTOCOLS... -0

 Generalize Port Data Interface
— XML?

 Component Developers Need Help Here!

Kohl/2000-10

Recursive / Nested Components

* Generally Useful
* Sign of a Good Component Model...

e For GIST:

= Compose Components Within SC / Cluster
= Compose SCs / Clusters...

Kohl/2000-11

Fault Tolerance

* Don’t “Leave” to the Component Developer!

* Need Base Infrastructure in CCA Framework
= Within Components — Exceptions
= Across Components — Failure Events
— Resource / Network Crash Recovery
= High-Level Checkpointing?

Kohl/2000-12

Summary

e GIST — Genomic Integrated Supercomputing Toolkit
 CCA Needs:

— Naming Space

— Events

— Dependencies

— Component Interfacing — Data Description

= Recursive / Nested Components

= Fault Tolerance

Kohl/2000-13

	CCA & GIST:Genomic IntegratedSupercomputing Toolkit
	GIST: Genomic Integrated Supercomputing Toolkit
	GIST Model
	Resource Requirements
	Time / Data Dependencies
	GIST Needs From CCA
	Naming Space(s)
	Events
	Dependencies
	Component Interfacing(In “Real” Life)
	Recursive / Nested Components
	Fault Tolerance
	Summary

