
Welcome

CCA Tutorial 1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

Welcome to the
Common Component Architecture

Tutorial

WelcomeCCA
Common Component Architecture

2

Who Are We?
(And Where Did We Come From?)

• ACTS Toolkit Interoperability Effort (Late 1990’s)
– Part of DOE 2000, Many Tool Integration Projects

• “One-to-One”, Leading to N2 Solutions…

• Common Component Architecture Forum (1998)
– Goal: To Develop a General Interoperability Solution
– Grass Roots Effort to Explore High-Performance

Components for Scientific Software
• SciDAC Center for Component Technology for

Terascale Simulation Software (CCTTSS, 2001)
– Part of New DOE Scientific Simulation Program
– Technology Development in Several Thrust Areas…

Welcome

CCA Tutorial 2

WelcomeCCA
Common Component Architecture

3

The Common Component Architecture
(CCA) Forum

• Define Specifications for High-Performance Scientific
Components & Frameworks

• Promote and Facilitate Development of Domain-Specific
“Standard” Interfaces

• Goal: Interoperability between components developed
by different expert teams across different institutions

• Quarterly Meetings, Open membership…

http://www.cca-forum.org/
Mailing List: cca-forum@cca-forum.org

WelcomeCCA
Common Component Architecture

4

Center for Component Technology for
Terascale Simulation Software (CCTTSS)

• DOE SciDAC ISIC ($16M over 5 years)
– SciDAC = Scientific Discovery through Advanced Computing
– ISIC = Integrated Software Infrastructure Center

• Subset of CCA Forum
• Develop CCA technology from current prototype stage to

full production environment
• Increase understanding of how to use component

architectures effectively in HPC environments
• Participants: (Funded by the Office of Mathematical, Information and Computational Sciences (MICS))

http://www.cca-forum.org/ccttss/
Lead PI: Rob Armstrong, SNL <rob@sandia.gov>

Welcome

CCA Tutorial 3

WelcomeCCA
Common Component Architecture

5

CCTTSS Research Thrust Areas
and Main Working Groups

• Scientific Components
– Scientific Data Objects
Lois Curfman McInnes, ANL (curfman@mcs.anl.gov)

• “MxN” Parallel Data Redistribution
Jim Kohl, ORNL (kohlja@ornl.gov)

• Frameworks
– Language Interoperability / Babel / SIDL
– Component Deployment / Repository
Scott Kohn, LLNL (skohn@llnl.gov)

• User Outreach
David Bernholdt, ORNL (bernholdtde@ornl.gov)

WelcomeCCA
Common Component Architecture

6

Acknowledgements
• CCA Forum Tutorial WG

– Rob Armstrong, David Bernholdt, Wael Elwasif, Lori Freitag, Dan
Katz, Jim Kohl, Gary Kumfert, Lois Curfman McInnes, Boyana
Norris, Craig Rasmussen, Jaideep Ray, Torsten Wilde

– ANL, JPL, LANL, LLNL, ORNL, SNL

• And many more contributing to CCA itself…
– ANL - Lori Freitag, Kate Keahey, Jay Larson, Ray Loy, Lois

Curfman McInnes, Boyana Norris, …
– Indiana University - Randall Bramley, Dennis Gannon, …
– JPL – Dan Katz, …
– LANL - Craig Rasmussen, Matt Sotille, …
– LLNL - Tom Epperly, Scott Kohn, Gary Kumfert, …
– ORNL - David Bernholdt, Wael Elwasif, Jim Kohl, Torsten Wilde, …
– PNNL - Jarek Nieplocha, Theresa Windus, …
– SNL - Rob Armstrong, Ben Allan, Lori Freitag, Curt Janssen,

Jaideep Ray, …
– University of Utah - Steve Parker, …
– And others as well …

Welcome

CCA Tutorial 4

WelcomeCCA
Common Component Architecture

7

Next: The Sausage Grinder Talk

A Pictorial Introduction
to Components

in Scientific Computing

2

Once upon a time...

Input

Output

Program

3

As Scientific Computing grew...

4

Tried to ease the bottle neck

5

SPMD was born.

21

3 4

21

3 4

2

1

3

4

6

SPMD worked.

21

3 4

21

3 4

2

1

3

4

But it
isn’t

easy!!!

But it
isn’t

easy!!!

7

Meanwhile, corporate computing
was growing in a different way

Input

Output

Program

browser

spreadsheet

editor

graphics

databasemultimedia

email client

Unicode

Input

8

This created a whole new set of
problems complexity

browser

spreadsheet

editor

graphics

databasemultimedia

email client

Unicode

� Interoperability
across multiple
languages

� Interoperability
across multiple
platforms

� Incremental
evolution of large
legacy systems
(esp. w/ multiple
3rd party software)

9

Component Technology
addresses these problems

10

So what’s a component ???
Implementation :
No Direct Access

Interface Access :
Generated by Tools

Matching Connector :
Assigned by Framework
Hidden from User

11

1. Interoperability across
multiple languages

C

C++ F77 Java

Python

Language &
Platform

independent
interfaces

Automatically
generated

bindings to
working code

12

2. Interoperability Across Multiple
Platforms Imagine a company

migrates to a new
system, OS, etc.

What if the
source to

this one part
is lost???

13

Transparent Distributed
Computing

internetinternet

These wires
are very,

very smart!

14

3. Incremental Evolution With
Multiple 3rd party software

v 1.0

v 2.0 v 3.0

15

Now suppose you find this bug...

v 1.0

v 2.0 v 3.0

16

Good news: an upgrade available

v 1.0

v 2.0 v 3.0

Bad news: there’s a dependency

2.1

2.0

17

v 3.02.1

2.0

Great News:
Solvable with Components

18

v 1.0

Great News:
Solvable with Components

2.1 v 3.0

2.0

19

Why Components for Scientific
Computing Complexity

� Interoperability
across multiple
languages

� Interoperability
across multiple
platforms

� Incremental
evolution of large
legacy systems
(esp. w/ multiple
3rd party software)

Sapphire

SAMRAI

Ardra
Scientific Viz

DataFoundry

Overture

linear solvers hypre
nonlinear solvers

ALPS

JEEP

20

The Model for Scientific
Component Programming

Science

Industry

?CCA

21

The End
Next: Intro to Components

Page 1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

Introduction to Components

Intro to ComponentsCCA
Common Component Architecture

2

Overview
• Why do we need components?
• What are components?
• How do we make components?

Page 2

Intro to ComponentsCCA
Common Component Architecture

3

Why Components

• In “Components, The Movie”
– Interoperability across multiple languages
– Interoperability across multiple platforms
– Incremental evolution of large legacy systems

(esp. w/ multiple 3rd party software)
• Complexity

Intro to ComponentsCCA
Common Component Architecture

4

Why Components

The task of the software development team is to engineer the
illusion of simplicity [Booch].

Page 3

Intro to ComponentsCCA
Common Component Architecture

5

Software Complexity
• Software crisis

– “Our failure to master the complexity of software results in
projects that are late, over budget, and deficient in their stated
requirements.” [Booch]

• Can’t escape it
– “The complexity of software is an essential property, not an

accidental one.” [Brooks]
• Help is on the way…

– “A complex system that works is invariably found to have evolved
from a simple system that worked… A complex system designed
from scratch never works and cannot be patched up to make it
work.” [Gall]

– “Intracomponent linkages are generally stronger than
intercomponent linkages.” [Simon]

– “Frequently, complexity takes the form of a hierarchy.” [Courtois]

Intro to ComponentsCCA
Common Component Architecture

6

The Good the Bad and the Ugly

• An example of what can lead to a crisis in software:
• At least 41 different Fast Fourier Transform (FFT)

libraries:
– see, http://www.fftw.org/benchfft/doc/ffts.html

• Many (if not all) have different interfaces
– different procedure names and different input and output

parameters
• SUBROUTINE FOUR1(DATA, NN, ISIGN)

– Replaces DATA by its discrete Fourier transform (if ISIGN is input
as 1) or replaces DATA by NN times its inverse discrete Fourier
transform (if ISIGN is input as -1). DATA is a complex array of
length NN or, equivalently, a real array of length 2*NN. NN
MUST be an integer power of 2 (this is not checked for!).

Page 4

Intro to ComponentsCCA
Common Component Architecture

7

Components Promote Reuse

• Components promote software reuse
– “The best software is code you don’t have to write”

[Steve Jobs]
• Reuse, through cost amortization increases

software quality
– thoroughly tested code
– highly optimized code
– improved support for multiple platforms
– developer team specialization

Hero programmer producing single-purpose,
monolithic, tightly-coupled parallel codesX

Intro to ComponentsCCA
Common Component Architecture

8

What Are Components

• Why do we need components?
• What are components?
• How do we make components?

Page 5

Intro to ComponentsCCA
Common Component Architecture

9

What Are Components [Szyperski]

• A component is a binary unit of independent deployment
– well separated from other components

• fences make good neighbors
– can be deployed independently

• A component is a unit of third-party composition
– is composable (even by physicists)

– comes with clear specifications of what it requires and provides
– interacts with its environment through well-defined interfaces

• A component has no persistent state
– temporary state set only through well-defined interfaces
– throw away that dependence on global data (common blocks)

• Similar to Java packages and Fortran 90 modules (with a
little help)

Intro to ComponentsCCA
Common Component Architecture

10

What Does This Mean

• So what does this mean
– Components are “plug and play”
– Components are reusable
– Component applications are evolvable

Page 6

Intro to ComponentsCCA
Common Component Architecture

11

Component Forms [Cheesman & Daniels]

• Component Standard
– must conform to some sort of environment standard (Framework)

• Component Specification
– specification of what a component does

• Component Interface
– specification of procedure names and procedure parameters

• Component Implementation
– written in a computer language (Fortran for example)

• Installed Component
– a shared object library (.so file)

• Component Object
– services and state joined together

Intro to ComponentsCCA
Common Component Architecture

12

What is a Component Architecture

• A set of standards that allows:
– Multiple groups to write units of software (components)
– The groups to be sure that their components will work with

other components written in the same architecture

• A framework that holds and runs the components
– And provides services to the components to allow them to

know about and interact with other components

Page 7

Intro to ComponentsCCA
Common Component Architecture

13

What Are Components II

• Components live in an environment and interact with
the environment through a framework and
connections with other components.

• Components can discover information about their
environment from the framework.

• Components must explicitly publish what capabilities
they provide.

• Components must explicitly publish what connections
they require.

• Components are a runtime entity.

Intro to ComponentsCCA
Common Component Architecture

14

Components Are Different From
Objects

• You can build components out of object classes.
– (or out of Fortran procedures)

• But a component is more that just an object.
• A component only exists in the context of a

Component Standard (Framework).

Page 8

Intro to ComponentsCCA
Common Component Architecture

15

Pictorial Example

Consumer

uses

Producer

provides

Intro to ComponentsCCA
Common Component Architecture

16

Three Components

Integrator

integrate()

RandomGenerator

getRandomValue()

Function

evaluate()

Page 9

Intro to ComponentsCCA
Common Component Architecture

17

How Do We Make Components

• Why do we need components?
• What are components?
• How do we make components?

Intro to ComponentsCCA
Common Component Architecture

18

Interface Declaration

class Integrator
{
virtual void
integrate(double lowBound,

double upBound,
int count) = 0;

};

Integrator.h

interface
function integrate(lowBound,

upBound,
count)

real(kind(1.0D0)) :: lowBound, upBound
integer :: count
end function

end interface

Integrator.f90

Integrator

integrate()

Page 10

Intro to ComponentsCCA
Common Component Architecture

19

Publish the Interface in SIDL

• Publish the interface
– interfaces are published in SIDL (Scientific Interface

Definition Language)
– can’t publish in native language because of language

interoperability requirement
• Integrator example:

interface Integrator extends cca.Port
{
double integrate(in double lowBound,

in double upBound,
in int count);

}

Intro to ComponentsCCA
Common Component Architecture

20

F90 Integrator Interface

MODULE Integrator

interface

!
! Returns the result of the integration from lowBound to upBound.
!
! lowBound - the beginning of the integration interval
! upBound - the end of the integration interval
! count - the number of integration points
!
function integrate(port, lowBound, upBound, count)
use CCA
type(CCAPort) :: port
real(kind(1.0D0)) :: integrate, lowBound, upBound
integer :: count

end function integrate

end interface

END MODULE Integrator

Page 11

Intro to ComponentsCCA
Common Component Architecture

21

F90 Program

program Driver
use CCA
use MonteCarloIntegrator
type (CCAPort) :: port

print *, "Integral = ", integrate(port, 0.0D0, 1.0D0, 1000)

end program

Intro to ComponentsCCA
Common Component Architecture

22

C++ Abstract Integrator Class

/**
* This abstract class declares the Integrator interface.
*/

class Integrator : public virtual gov::cca::port
{
public:
virtual ~Integrator() { }

/**
* Returns the result of the integration from lowBound to upBound.
*
* lowBound - the beginning of the integration interval
* upBound - the end of the integration interval
* count - the number of integration points
*/
virtual double integrate(double lowBound, double upBound, int count) = 0;

};

Page 12

Intro to ComponentsCCA
Common Component Architecture

23

C++ Object-Oriented Program

#include <iostream>
#include ”MonteCarloIntegrator.h"

int main(int argc, char* argv[])
{

MonteCarloIntegrator* integrator = new MonteCarloIntegrator();

cout << “Integral = “ << integrator->integrate(0.0, 1.0, 1000) << endl;

return 0;
}

Intro to ComponentsCCA
Common Component Architecture

24

Component Program

LinearFunction

evaluate()

UniformRandomGenerator

getRandomValue()

MonteCarloIntegrator

integrate()

TrapezoidalIntegrator

integrate()

ReallyWeirdFunction

evaluate()

GaussianQuadIntegrator

integrate()

LinearNRandomGenerator

getRandomValue()

Component LibraryProgram

Page 13

Intro to ComponentsCCA
Common Component Architecture

25

Questions and Answers

• Is CCA similar to CORBA or COM/DCOM?
– yes, but is a component architecture oriented towards

high-performance computing
• Is CCA for parallel or distributed computing?

– both, but currently only one or the other
• Can I use CCA today for scientific applications?

– yes, but it is a research project
• Where can I get more information?

– http://www.cca-forum.org/
– join the CCA Forum

Intro to ComponentsCCA
Common Component Architecture

26

Final Thought

• Components are reusable assets. Compared with
specific solutions to specific problems, components
need to be carefully generalized to enable reuse in a
variety of contexts. Solving a general problem rather
than a specific one takes more work. In addition,
because of the variety of deployment contexts, the
creation of proper documentation, test suites,
tutorials, online help texts, and so on is more
demanding for components than for a specialized
solution. [Szyperski, p. 14]

Page 14

Intro to ComponentsCCA
Common Component Architecture

27

Bibliography

Booch, G. 1994. Object-Oriented Analysis and Design with Applications. Second
Editions. Santa Clara, CA: The Benjamin/Cummings Publishing Company, p. 8.

Brooks, F. April 1987. No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer vol. 20(4), p. 12.

Cheesman, J. and J. Daniels. UML Components: A Simple Process for Specifying
Component-Based Software. New York, NY: Addison-Wesley

Courtois, P. June 1985. On Time and Space Decomposition of Complex Structures.
Communications of the ACM vol 28(6), p. 596.

Gall, J. 1986. Systemantics: How Systems Really Work and How They Fail. Second
Edition. Ann Arbor, MI: The General Systemantics Press, p. 65.

Simon, H. 1982. The Sciences of the Artificial. Cambridge, MA: The MIT Press, p.
217.

Szyperski, C. 1998. Component Software: Beyond Object-Oriented Programming.
New York, NY: Addison-Wesley, p. 30

Intro to ComponentsCCA
Common Component Architecture

28

Next: CCA Concepts

1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

Common Component Architecture
Concepts

CCA ConceptsCCA
Common Component Architecture

2

Goals

• Introduce essential features of the Common
Component Architecture

• Provide common vocabulary for remainder of
tutorial

• What distinguishes CCA from other
component environments?

2

CCA ConceptsCCA
Common Component Architecture

3

Features of the Common Component
Architecture

• A component model specifically designed for high-
performance computing
– Support HPC languages (Babel)
– Support parallel as well as distributed execution models
– Minimize performance overhead

• Minimalist approach makes it easier to componentize
existing software

• Component interactions are not merely dataflow
• Components are peers

– No particular component assumes it is “in charge” of the
others.

– Allows the application developer to decide what is important.

CCA ConceptsCCA
Common Component Architecture

4

CCA Concepts: Ports

• Components interact through well-defined interfaces,
or ports
– In OO languages, a port is a class or interface
– In Fortran, a port is a bunch of subroutines or a module

• Components may provide ports – implement the
class or subroutines of the port

• Components may use ports – call methods or
subroutines in the port

• Links denote a caller/callee relationship, not
dataflow!
– e.g., FunctionPort could contain: evaluate(in Arg, out Result)

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

3

CCA ConceptsCCA
Common Component Architecture

5

Components and Ports
in the Integrator Example

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA ConceptsCCA
Common Component Architecture

6

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

An Application
Built from the Example Components

4

CCA ConceptsCCA
Common Component Architecture

7

Another Application…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

CCA ConceptsCCA
Common Component Architecture

8

Application 3…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

5

CCA ConceptsCCA
Common Component Architecture

9

And Many More…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

CCA ConceptsCCA
Common Component Architecture

10

Ports, Interoperability, and Reuse

• Ports (interfaces) define how components interact
• Generality, quality, robustness of ports is up to

designer/architect
– “Any old” interface is easy to create, but…
– Developing a robust domain “standard” interface requires

thought, effort, and cooperation
• General “plug-and-play” interoperability of

components requires multiple implementations
conforming to the same interface

• Designing for interoperability and reuse requires
“standard” interfaces
– Typically domain-specific
– “Standard” need not imply a formal process, may mean

“widely used”

6

CCA ConceptsCCA
Common Component Architecture

11

Components vs Libraries

• Component environments
rigorously enforce interfaces

• Can have several versions of
a component loaded into a
single application

• Component needs add’l
code to interact w/
framework
– Constructor and destructor

methods
– Tell framework what ports it

uses and provides
• Invoking methods on other

components requires slight
modification to “library” code

MonteCarloIntegrator

Integrator library code
(slightly modified)

Framework interaction
code (new)

CCA ConceptsCCA
Common Component Architecture

12

CCA Concepts: Frameworks
• The framework provides the means to “hold”

components and compose them into applications
– The framework is often application’s “main” or “program”

• Frameworks allow exchange of ports among
components without exposing implementation details

• Frameworks provide a small set of standard services
to components
– BuilderServices allow programs to compose CCA apps

• Frameworks may make themselves appear as
components in order to connect to components in
other frameworks

• Currently: specific frameworks support specific
computing models (parallel, distributed, etc.).
Future: full flexibility through integration or
interoperation

7

CCA ConceptsCCA
Common Component Architecture

13

The Lifecycle of a Component

• User instructs framework to load and
instantiate components

• User instructs framework to connect uses
ports to provides ports

• Code in components uses functions provided
by another component

• Ports may be disconnected
• Component may be destroyed Look at actual

code in next
tutorial module

CCA ConceptsCCA
Common Component Architecture

14

Loading and Instantiating Components

create Driver Driver
create LinearFunction LinearFunction
create MonteCarloIntegrator MonteCarloIntegrator

• Details are framework-specific!

• Ccaffeine currently provides both
command line and GUI approaches

• Components are code (usu.
library or shared object) +
metadata

• Using metadata, a Palette of
available components is
constructed

• Components are instantiated
by user action (i.e. by
dragging from Palette into
Arena)

• Framework calls component’s
constructor, then setServices

8

CCA ConceptsCCA
Common Component Architecture

15

Component’s View of Instantiation
• Framework calls component’s

constructor
• Component initializes internal

data, etc.
– Knows nothing outside itself

• Framework calls component’s
setServices
– Passes setServices an object

representing everything “outside”
– setServices declares ports

component uses and provides
• Component still knows nothing

outside itself
– But Services object provides the

means of communication w/
framework

• Framework now knows how to
“decorate” component and how it
might connect with others

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

MonteCarloIntegrator

Integrator code

Framework interaction code
constructor setServices destructor

CCA.Services
provides IntegratorPort

uses FunctionPort,
RandomGeneratorPort

CCA ConceptsCCA
Common Component Architecture

16

connect Driver IntegratorPort MonteCarloIntegrator IntegratorPort
connect MonteCarloIntegrator FunctionPort LinearFunction FunctionPort
…

User Connects Ports
• Can only connect user &

provider
– Not uses/uses or

provides/provides
• Ports connected by type, not

name
– Port names must be unique

within component
– Types must match across

components
• Framework puts info about

provider into user
component’s Services object

9

CCA ConceptsCCA
Common Component Architecture

17

Component’s View
of Connection

• Framework puts info
about provider into user
component’s Services
object
– MonteCarloIntegrator’s

Services object is aware
of connection

– NonlinearFunction is
not!

• MCI’s integrator code
cannot yet call functions
on FunctionPort

NonlinearFunction

Function code

CCA.Services
provides FunctionPort

Framework interaction code
MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

CCA ConceptsCCA
Common Component Architecture

18

Component’s View of Using a Port

MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

• User calls getPort to obtain
(handle for) port from Services
– Finally user code can “see”

provider
• Cast port to expected type

– OO programming concept
– Insures type safety
– Helps enforce declared

interface
• Call methods on port

– e.g.
sum = sum + function->evaluate(x)

• Release port

10

CCA ConceptsCCA
Common Component Architecture

19

Importance of Provides/Uses Pattern for
Ports

• Fences between components
– Components must declare both

what they provide and what
they use

– Components cannot interact
until ports are connected

– No mechanism to call anything
not part of a port

• Ports preserve high
performance direct connection
semantics…

• …While also allowing distributed
computing

Component 1 Component 2
Provides/Uses

Port

Direct Connection

Component 1

Component 2
Uses
Port

Provides
Port

Network
Connection

CCA ConceptsCCA
Common Component Architecture

20

CCA Concepts: Direct Connection

• Components loaded into separate namespaces in the
same address space (process) from shared libraries

• getPort call returns a pointer to the port’s function table

• Calls between components equivalent to a C++ virtual
function call: lookup function location, invoke

• Cost equivalent of ~2.8 F77 or C function calls

• All this happens “automatically” – user just sees high
performance

• Description reflects Ccaffeine implementation, but similar
or identical mechanisms in other direct connect fwks

11

CCA ConceptsCCA
Common Component Architecture

21

CCA Concepts:
Parallel Components

• Single component multiple
data (SCMD) model is
component analog of widely
used SPMD model

• Each process loaded with the
same set of components
wired the same way

• Different components in same
process “talk to each” other
via ports and the framework

• Same component in different
processes talk to each other
through their favorite
communications layer (i.e.,
MPI, PVM, GA)

• Also supports MPMD/MCMD

P0 P1 P2 P3

Components: Red, Green, Blue

Framework: Gray

Framework stays “out of the way”
of component parallelism

CCA ConceptsCCA
Common Component Architecture

22

CCA Concepts:
MxN Parallel Data Redistribution

• Share Data Among Coupled Parallel Models
– Disparate Parallel Topologies (M processes vs. N)
– e.g. Ocean & Atmosphere, Solver & Optimizer…
– e.g. Visualization (Mx1, increasingly, MxN)

Research area -- tools under development

12

CCA ConceptsCCA
Common Component Architecture

23

CCA Concepts: Language
Interoperability

• Existing language
interoperability
approaches are “point-
to-point” solutions

• Babel provides a unified
approach in which all
languages are
considered peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java
Babel tutorial
coming up!

CCA ConceptsCCA
Common Component Architecture

24

Concept Review
• Ports

– Interfaces between components
– Uses/provides model

• Framework
– Allows assembly of components into applications

• Direct Connection
– Maintain performance of local inter-component calls

• Parallelism
– Framework stays out of the way of parallel components

• MxN Parallel Data Redistribution
– Model coupling, visualization, etc.

• Language Interoperability
– Babel, Scientific Interface Definition Language (SIDL)

13

CCA ConceptsCCA
Common Component Architecture

25

Next: A Simple CCA Example

1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

A Simple CCA Component Application

A Simple CCA Component ApplicationCCA
Common Component Architecture

2

Module Overview

• What the example does: the math.
• From math to components: the architecture.
• The making of components: inheritance and

ports.
• Framework-component interactions.
• Putting it all together: the CCafeine ways.
• The application in action.

2

A Simple CCA Component ApplicationCCA
Common Component Architecture

3

Goals

To show how CCA components are used to

build an application to numerically integrate a

continuous function using two different

integration techniques.

A Simple CCA Component ApplicationCCA
Common Component Architecture

4

The Math: Integrator (1)

)
2

()(
1

1∑∫
=

− +−
≈

n

j

jj
b

a

xx
f

n
abdxxf

The midpoint numerical integrator

a b x

)(xf

3

A Simple CCA Component ApplicationCCA
Common Component Architecture

5

The Math: Integrator (2)

The Monte Carlo integrator









−

≈ ∑∫
=

N

i
n

b

a

xf
Nab

dxxf
1

)(11)(

[]baxn ,in ddistributely Uniformal
xa b

)(xf

A Simple CCA Component ApplicationCCA
Common Component Architecture

6

The math: Functions

xxf 2)(1 =Linear Function

2
2)(xxf =Nonlinear Function

23 1
4)(
x

xf
+

=Pi Function

4

A Simple CCA Component ApplicationCCA
Common Component Architecture

7

Available Components

LinearFunction

FunctionPort

FunctionPort

MidpointIntegrator

IntegratorPort

NonLinearFunction

FunctionPort

PiFunction

FunctionPort

Go

Driver

IntegratorPort

RandomGeneratorPort

RandomGeneratorFunctionPort

MonteCarloIntegrator

IntegratorPort
RandomGeneratorPort

A Simple CCA Component ApplicationCCA
Common Component Architecture

8

Pluggability: Scenario 1

LinearFunction

FunctionPort

FunctionPort

MidpointIntegrator

IntegratorPort

NonLinearFunction

FunctionPort

PiFunction

FunctionPort

Go

Driver

IntegratorPort

RandomGeneratorPort

RandomGeneratorFunctionPort

MonteCarloIntegrator

IntegratorPort
RandomGeneratorPort

5

A Simple CCA Component ApplicationCCA
Common Component Architecture

9

Pluggability: Scenario 2

LinearFunction

FunctionPort

FunctionPort

MidpointIntegrator

IntegratorPort

NonLinearFunction

FunctionPort

PiFunction

FunctionPort

Go

Driver

IntegratorPort

RandomGeneratorPort

RandomGeneratorFunctionPort

MonteCarloIntegrator

IntegratorPort
RandomGeneratorPort

A Simple CCA Component ApplicationCCA
Common Component Architecture

10

MonteCarloIntegrator in Details

FunctionPort

MonteCarloIntegrator

IntegratorPort
RandomGeneratorPort

What makes it a component?
Inheritance from gov.cca.Component

integrators.Integrator gov.cca.Component

MonteCarloIntegrator

Inheritance Tree

Where does IntegratorPort come from?
Inheritance from integrators.Integrator

Relevant files:
integrator.sidl
function.sidl
random.sidl

6

A Simple CCA Component ApplicationCCA
Common Component Architecture

11

Saying it in SIDL
version integrators 1.0;
package integrators {

interface Integrator
extends gov.cca.Port

{
double integrate(in double lowBound,

in double upBound, in int count);
}
class MonteCarloIntegrator

implements-all Integrator,
gov.cca.Component

{
}

………
}

A Simple CCA Component ApplicationCCA
Common Component Architecture

12

Notes

• Inheritance from gov.cca.Component
furnishes the only method known to the
framework: setServices()

• “Provides” ports are interfaces that need to
inherit from gov.cca.Port (Integrator in this
case)

7

A Simple CCA Component ApplicationCCA
Common Component Architecture

13

The Framework Role

• Framework-to-Component: setServices()
– Called after the component is constructed.
– The component’s chance to identify:

• Ports it provides – addProvidesPort()
• Ports it uses – registerUsesPort()

– Component should not acquire the port here –
Reason: it may not be there yet !!!!

– Also used to “shutdown” the component.

A Simple CCA Component ApplicationCCA
Common Component Architecture

14

Component-to-Framework

• Mainly through Services object passed through
setServices().

• addProvidesPort(), registerUsesPort():
– Component “pointer”, PortName, PortType, PortProperties.

• getPort():
– Called by the using component.
– Matching using portType (not name).

• releasePort(), removeProvidesPort():
– When all is done.

8

A Simple CCA Component ApplicationCCA
Common Component Architecture

15

The Life Cycle Revisited
Framework

PiFunction

Create PiFunction

create
setServices()addProvidesPort()

setServices()

setServices()

setServices()

MonteCarloIntegrator

Create MonteCarloIntegrator

create

addProvidesPort()
registerUsesPort()

Construction

Connect MonteCarloIntegrator,
PiFunction

getPort()

evaluate()
integrate()

Execution

evaluate()

integrate()

A Simple CCA Component ApplicationCCA
Common Component Architecture

16

Example: setservices() in
MonteCarloIntegrator (C++)

………
frameworkServices = services;
if (frameworkServices._not_nil ()) {

gov::cca::TypeMap tm = frameworkServices.createTypeMap ();
gov::cca::Port p = self;
frameworkServices.addProvidesPort (p,

"IntegratorPort",
"integrators.Integrator", tm);

// The Ports I use
frameworkServices.registerUsesPort (

"FunctionPort",
"functions.Function", tm);

frameworkServices.registerUsesPort (
"RandomGeneratorPort",
"randomgen.RandomGenerator", tm);

………

portName

portProperties

portType

9

A Simple CCA Component ApplicationCCA
Common Component Architecture

17

Notes

• setServices() mainly used to inform the framework
which ports the current component provides and/or
uses.

• No actual connections between ports are established
in setServices(), since the “other” port may not yet
exist !!!

• portName is unique per component.
• portType identifies the “interface” that the port

implements (used to match user and provider).
• portProperties : list of port-specific key-value pairs.

A Simple CCA Component ApplicationCCA
Common Component Architecture

18

Example: integrate() in
MonteCarloIntegrator (C++)

………
functions::Function functionPort;
randomgen::RandomGenerator randomPort;
double sum = 0.0;
randomPort = frameworkServices.getPort ("RandomGeneratorPort");
functionPort = frameworkServices.getPort ("FunctionPort");
for (int i = 0; i < count; i++){

double x = lowBound + (upBound - lowBound) *
randomPort.getRandomNumber();

sum = sum + functionPort.evaluate(x);
}
frameworkServices.releasePort ("FunctionPort");
frameworkServices.releasePort ("RandomGeneratorPort");
return (upBound - lowBound) * sum / count;

………

10

A Simple CCA Component ApplicationCCA
Common Component Architecture

19

Putting it all together

• Getting the application to do something:
– Assembling the components into an app.
– Launching the Application.

• App assembly:
– Framework need to be told what components to use, and

where to find them.
– Framework need to be told which uses port connects to

which provides port.
• App execution: the GO port:

– Special provides port used to launch the application (after
connections are established).

– Has one method, go(), that is called by the framework to get
the application going.

A Simple CCA Component ApplicationCCA
Common Component Architecture

20

Oh Component , where art thou?.
Which components, and how to create them

More details in the Ccaffeine Module

11

A Simple CCA Component ApplicationCCA
Common Component Architecture

21

App. Assembly The Ccafeine way
Command line “script”

GUI Interface

A Simple CCA Component ApplicationCCA
Common Component Architecture

22

Next: Babel

1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

Language Interoperable
CCA Components via

BabelCCA
Common Component Architecture

2

History of Babel & CCA

XCAT (Indiana)
SciRUN (Utah)
Ccaffeine (SNL)

Babel (LLNL)

Tutorial

Fr
am

ew
or
ks

Language

Interoperability

Applications
Data

MxN

Decaf

Babelized
Frameworks

Ccaffeine

t

2

BabelCCA
Common Component Architecture

3

What I mean by
“Language Interoperability”

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(f77)

Scripting Driver
(Python)

Visualization System
(Java)

Callback Handlers
(Python)

Callback Handlers
(Python)

BabelCCA
Common Component Architecture

4

One reason why mixing
languages is hard Native

cfortran.h

SWIG

JNI

Siloon

Chasm

Platform
Dependent

C

C++

f77

f90

Python

Java

3

BabelCCA
Common Component Architecture

5

Babel makes all supported
languages peers

C

C++

f77

f90

Python

Java
Once a library has been
“Babelized” it is equally

accessable from all
supported languages

This is not
an LCD

Solution!

BabelCCA
Common Component Architecture

6

Babel Module’s Outline

• Introduction
• Babel Basics

– What Babel does and how
– How to use Babel
– Concepts needed for future modules

• Babel & CCA
– Decaf Framework
– Building language independent CCA components
– Demo

4

BabelCCA
Common Component Architecture

7

Babel’s Mechanism for Mixing
Languages

• Code Generator • Runtime Library

SIDL
interface

description

Babel
Compiler

C++

F77

F90

Python

C

XML

Matlab?

Java

Babel
Runtime

Application

BabelCCA
Common Component Architecture

8

greetings.sidl: A Sample SIDL File

version greetings 1.0;
package greetings {

interface Hello {
void setName(in string name);
string sayIt ();

}
class English implements-all Hello { }

}

version greetings 1.0;
package greetings {

interface Hello {
void setName(in string name);
string sayIt ();

}
class English implements-all Hello { }

}

5

BabelCCA
Common Component Architecture

9

Library Developer Does This...

• `babel --server=C++ greetings.sidl`
• Add implementation details
• Compile & Link into Library/DLL

SIDL
interface

description

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libgreetings.so

BabelCCA
Common Component Architecture

10

Adding the Implementation

string

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

string msg(“Hello “);

return msg + d_name + “!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

string

greetings::English_impl::sayIt()

throw ()

{

// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)

string msg(“Hello “);

return msg + d_name + “!”;

// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

namespace greetings {
class English_impl {

private:
// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

6

BabelCCA
Common Component Architecture

11

Library User Does This...

• `babel --client=F77 greetings.sidl`
• Compile & Link generated Code & Runtime
• Place DLL in suitable location

SIDL
interface

description

Babel
Compiler IOR

Headers

F77 Stubs

libgreetings.so

Babel
Runtime

Application

BabelCCA
Common Component Architecture

12

SIDL 101: Classes & Interfaces

• SIDL has 3 user-defined objects
– Interfaces – APIs only, no implementation
– Abstract Classes – 1+ methods unimplemented
– Concrete Classes – All methods are implemented

• Inheritance (like Java/Objective C)
– Interfaces may extend Interfaces
– Classes extend no more than one Class
– Classes can implement multiple Interfaces

• Only concrete classes can be instantiated

7

BabelCCA
Common Component Architecture

13

SIDL 101: Methods and Arguments

• Methods are public virtual by default
– static methods are not associated with an object

instance
– final methods can not be overridden

• Arguments have 3 parts
– Mode: can be in, out, or inout (like CORBA)
– Type: one of (bool, char, int, long, float, double,

fcomplex, dcomplex, array<Type,Dimension>, enum,
interface, class)

– Name:

BabelCCA
Common Component Architecture

14

Babel Module’s Outline

• Introduction
• Babel Basics

– What Babel does and how
– How to use Babel
– Concepts needed for future modules

• Babel & CCA
– History & Current directions
– Decaf Framework
– Building language independent CCA components
– Demo

8

BabelCCA
Common Component Architecture

15

Decaf Details & Disclaimers

• Babel is a hardened tool
• Decaf is an example, not a product

– Demonstrate Babel’s readiness for “real”
CCA frameworks

– Maintained as a stopgap
– Distributed in “examples” subdirectory of

Babel
• Decaf has no GUI

BabelCCA
Common Component Architecture

16

The CCA Spec is a SIDL File

version gov.cca 0.6;
package gov {
package cca {

interface Port { }
interface Component {

void setServices(in Services svcs);
}
interface Services {

Port getPort(in string portName);
registerUsesPort(/*etc*/);
addProvidesPort(/*etc*/);

/*etc*/

version gov.cca 0.6;
package gov {
package cca {

interface Port { }
interface Component {

void setServices(in Services svcs);
}
interface Services {

Port getPort(in string portName);
registerUsesPort(/*etc*/);
addProvidesPort(/*etc*/);

/*etc*/

9

BabelCCA
Common Component Architecture

17

The CCA from Babel’s POV

BabelCCA
Common Component Architecture

18

How I Implemented Decaf

• wrote decaf.sidl file
• `babel --server=C++ cca.sidl decaf.sidl`
• Add implementation details
• Compile & Link into Library/DLL

cca.sidl
&

decaf.sidl

Babel
Compiler C++ Skels

C++ Impls

IORs

C++ Stubs

libdecaf.so

10

BabelCCA
Common Component Architecture

19

An Extra Babel Tip

• “precompile” SIDL into XML
• store XML in a directory
• Use Babel’s –R option to

specify search directories

cca.sidl Babel
Compiler XML

Type
Repository

decaf.sidl Babel
Compiler Skels

Impls

IORs

Stubs

BabelCCA
Common Component Architecture

20

How to Use CCA Components and
Decaf

• Decaf doesn’t provide a GUI
• Simply program by explicitly

– creating components
– connecting ports
– envoking the “goPort”

• Use Babel as needed to generate bindings in
your language of choice

• Make sure Babel Runtime can locate DLLs
for Decaf and any CCA components.

11

BabelCCA
Common Component Architecture

21

To Use the Decaf Framework

• `babel --client=Java –Rrepo function.sidl`
• Compile & Link generated Code & Runtime
• Place DLLs in suitable location

SIDL files Babel
Compiler IOR

Headers

Java Stubs

Babel
Runtime

Application

Repo
(XML)

component1.so

libdecaf.so

BabelCCA
Common Component Architecture

22

Example: A Driver in Python

import decaf.Framework
import gov.cca.ports.GoPort
if __name__ == ’__main__’:
fwk = decaf.Framework.Framework()
server = fwk.createInstance(”ServerName”,

”HelloServer.Component”, 0)
client = fwk.createInstance(”ClientName”,

”HelloClient.Component”, 0)
fwk.connect(server,”HelloPort”,

client,”HelloPort”)
port = fwk.lookupPort(client,”GoPort”)
go = gov.cca.ports.GoPort.GoPort(port)
go.go()

import decaf.Framework
import gov.cca.ports.GoPort
if __name__ == ’__main__’:
fwk = decaf.Framework.Framework()
server = fwk.createInstance(”ServerName”,

”HelloServer.Component”, 0)
client = fwk.createInstance(”ClientName”,

”HelloClient.Component”, 0)
fwk.connect(server,”HelloPort”,

client,”HelloPort”)
port = fwk.lookupPort(client,”GoPort”)
go = gov.cca.ports.GoPort.GoPort(port)
go.go()

12

BabelCCA
Common Component Architecture

23

How to Write and Use
Babelized CCA Components

• Define “Ports” in SIDL
• Define “Components” that implement those

Ports, again in SIDL
• Use Babel to generate the glue-code
• Write the guts of your component(s)

BabelCCA
Common Component Architecture

24

How to Write A
Babelized CCA Component (1/3)

• Define “Ports” in SIDL
– CCA Port =

• a SIDL Interface
• extends gov.cca.Port

version functions 1.0;
package functions {

interface Function extends gov.cca.Port {
double evaluate(in double x);

}
}

version functions 1.0;
package functions {

interface Function extends gov.cca.Port {
double evaluate(in double x);

}
}

13

BabelCCA
Common Component Architecture

25

How to Write A
Babelized CCA Component (2/3)

• Define “Components” that implement those Ports
– CCA Component =

• SIDL Class
• implements gov.cca.Component (& any provided ports)

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

class LinearFunction implements functions.Function,
gov.cca.Component {

double evaluate(in double x);
void setServices(in cca.Services svcs);

}

class LinearFunction implements-all
functions.Function, gov.cca.Component { }

class LinearFunction implements-all
functions.Function, gov.cca.Component { }

BabelCCA
Common Component Architecture

26

How to Write A
Babelized CCA Component (3/3)

• Use Babel to generate the glue code
– `babel --server=C –Rrepo function.sidl`

• Add implementation details

SIDL
interface

description

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so

14

BabelCCA
Common Component Architecture

27

What’s the Hardest Part
of this Process?

• Properly building dynamically loadable .so
files.

SIDL
interface

description

Babel
Compiler C Skels

C Impls

IORs

C Stubs

libfunction.so

BabelCCA
Common Component Architecture

28

Review of “Linkage”

• Static Linked Libraries (*.a)
– Symbols are hardcoded
– Resolved at link-time of application

• Shared Object Libraries (*.so)
– Symbols are hardcoded
– Symbols resolved at load time (before main())

• Dynamically Loaded Libraries (*.so) (*.dll in Win32)
– Symbols are determined at run time (by app code)
– Symbols resolved at run time (void* dlopen(char*))

15

BabelCCA
Common Component Architecture

29

What goes into a DLL?

libfoo.so

BabelCCA
Common Component Architecture

30

What goes into a DLL?

1. The Type’s Impl
• Where all the guts of

the component lives. Impl

libfoo.so

16

BabelCCA
Common Component Architecture

31

What goes into a DLL?

2. The Type’s IOR
• IORs (Intermediate

Object Representation)
• Always implemented in

ANSI C
• Babel Object Model is

implemented in IOR
• Dynamic Loading is

based on symbols in
IOR

Impl

IOR

libfoo.so

BabelCCA
Common Component Architecture

32

What goes into a DLL?

3. The Type’s Skel
• IORs depend on the

Skels
• Skels translate from

ANSI C to Impl
language

• Skels call Impls

Impl

SkelIOR

libfoo.so

17

BabelCCA
Common Component Architecture

33

What goes into a DLL?

4. The Type’s Stub
• Impl depends on Stubs

– class needs to call
methods on itself

– Like “this” pointer in C++
– self in Python

• Stubs translate from
application Language to
ANSI C

Impl

Skel

Stub

IOR

libfoo.so

BabelCCA
Common Component Architecture

34

What goes into a DLL?

5. Stubs for all the other
types that are

• passed as arguments,
• return values, or
• manipulated internally

in the Type’s Impl

Impl

Skel

Stub

IOR

StubStubStub

libfoo.so

18

BabelCCA
Common Component Architecture

35

Q: Why not keep each Stub
exclusively with its own Impl?

Impl

Skel

Stub

IOR

libfoo.so

Impl

Skel

Stub

IOR

libbar.so

A: Works only if bar_Impl and foo_Impl are implemented in the same
language

BabelCCA
Common Component Architecture

36

IORs provide a language-independent
binary interface

Impl

Skel

Stub

IOR

StubStubStub

libfoo.so

Impl

Skel

Stub

IOR

StubStubStub

libbar.so

19

BabelCCA
Common Component Architecture

37

What you’ll see with the upcoming
“Hello World” demo

Impl

Skel

Stub

IOR

StubStubCCA
Stubs

libdecaf.so

Impl

Skel

Stub

IOR

libserver.so

Port
Stubs

StubStubCCA
Stubs

Impl

Skel

Stub

IOR

libclient.so

Port
Stubs

StubStubCCA
Stubs

C++ F77 C

And a “main” in any of
pyth

on
F77 Ja

va

BabelCCA
Common Component Architecture

38

Contact Info
• Project: http://www.llnl.gov/CASC/components

– Babel: language interoperability tool
– Alexandria: component repository
– Quorum: web-based parliamentary system
– Gauntlet (coming soon): testing framework

• Bug Tracking: http://www-casc.llnl.gov/bugs
• Project Team Email: components@llnl.gov
• Mailing Lists: majordomo@lists.llnl.gov

subscribe babel-users [email address]
subscribe babel-announce [email address]

20

BabelCCA
Common Component Architecture

39

This work was performed under the auspices of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

UCRL-PRES-148796 5, July 2002

1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

Writing Components

Writing ComponentsCCA
Common Component Architecture

2

Module Overview
• Goal: present a step-by-step approach to

creating CCA components
• Example application
• Steps involved in writing CCA components

1. Interface definition; ports
2. Component implementation

1. Framework interactions
2. Component interactions: uses and provides ports

3. Compiling
4. Running

2

Writing ComponentsCCA
Common Component Architecture

3

Example Applications

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPortGoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

Rand-
RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

FunctionPort

MidpointIntegrator

IntegratorPort

Driver

Implement Integrator interface
Implement Function interface

Implements RandomGenerator interface

Writing ComponentsCCA
Common Component Architecture

4

Interface Definition
• Component functionality:

– Random number generator
• Generates a pseudo-random number

– Integrator
• Computes the integral of a scalar function

– Function
• Computes a scalar function

– Driver
• Entry point into the application

3

Writing ComponentsCCA
Common Component Architecture

5

MonteCarloIntegrator Component
1. Use Babel to generate C++ skeletons and

implementation files from integrator.sidl
2. Fill in implementation details in integrator-

component-c++/:
• integrator_MonteCarloIntegrator_Impl.hh
• integrator_MonteCarloIntegrator_Impl.cc

3. Create C wrapper functions (for component
creation):

• integrator_Integrator_wrapper_Impl.cc
4. Create makefile and build dynamic library

• Makefile
• libIntegrator-component-c++.so

5. Create integrator.cca (Ccaffeine-specific)

CCA
Common Component Architecture

6

version integrators 1.0;

package integrators {

interface Integrator extends gov.cca.Port {
double integrate(in double lowBound,

in double upBound, in int count);
}

class MonteCarloIntegrator implements-all Integrator,
gov.cca.Component { }

class MidpointIntegrator implements-all Integrator,
gov.cca.Component { }

class ParallelIntegrator implements-all Integrator,
gov.cca.Component { }

}

Integrator Port

FunctionPort

MonteCarloIntegrator

IntegratorPort
RandomGeneratorPort

integrators.Integrator gov.cca.Component

MonteCarloIntegrator

Inheritance Tree

Relevant files:
integrator.sidl
function.sidl
random.sidl

File: integrator.sidl

4

Writing ComponentsCCA
Common Component Architecture

7

Using Babel to Create The Repository
• A repository containing XML versions of the

SIDL definition is created first; it will be used
for name resolution later

• Makefile fragment (for all SIDL definitions in
this example):

SIDLFILES = cca.sidl integrator.sidl function.sidl \
random.sidl driver.sidl

.repository: $(SIDLFILES)
rm -f repository/*.xml \
babel --xml --repository-path=repository \
--output-directory=repository $(SIDLFILES)
touch .repository

Writing ComponentsCCA
Common Component Architecture

8

Using Babel to Generate Code
• Makefile fragment (top-level directory):

• Important: the randomgen.RandomGenerator and
functions.Function interfaces are referenced by the
Integrator implementation(s) and are thus included in
the command line for generating the sources for the
integrators package.

.integrator-component-c++: integrator.sidl cca.sidl
babel --server=C++ --repository-path=repository \
--output-directory=integrator-component-c++ \
--suppress-timestamp integrators \
randomgen.RandomGenerator functions.Function
touch .integrator-component-c++

5

Writing ComponentsCCA
Common Component Architecture

9

Generated Files

Contents of integrator-component-c++/
SIDL.hh gov_cca_ComponentID_IOR.c integrators_Integrator.hh
SIDL_BaseClass.cc gov_cca_ComponentID_IOR.h integrators_Integrator_IOR.c
SIDL_BaseClass.hh gov_cca_Component_IOR.c integrators_Integrator_IOR.h
SIDL_BaseException.cc gov_cca_Component_IOR.h integrators_Integrator_wrapper_Impl.cc
SIDL_BaseException.hh gov_cca_Port.cc integrators_MidpointIntegrator.cc
SIDL_BaseInterface.cc gov_cca_Port.hh integrators_MidpointIntegrator.hh
SIDL_BaseInterface.hh gov_cca_Port_IOR.c integrators_MidpointIntegrator_IOR.c
SIDL_DLL.cc gov_cca_Port_IOR.h integrators_MidpointIntegrator_IOR.h
SIDL_DLL.hh gov_cca_Services.cc integrators_MidpointIntegrator_Impl.cc
SIDL_Loader.cc gov_cca_Services.hh integrators_MidpointIntegrator_Impl.hh
SIDL_Loader.hh gov_cca_Services_IOR.c integrators_MidpointIntegrator_Skel.cc
babel.make gov_cca_Services_IOR.h integrators_MonteCarloIntegrator.cc
functions_Function.cc gov_cca_Type.hh integrators_MonteCarloIntegrator.hh
functions_Function.hh gov_cca_TypeMap.cc integrators_MonteCarloIntegrator_IOR.c
functions_Function_IOR.c gov_cca_TypeMap.hh integrators_MonteCarloIntegrator_IOR.h
functions_Function_IOR.h gov_cca_TypeMap_IOR.c integrators_MonteCarloIntegrator_Impl.cc
gov_cca_CCAException.cc gov_cca_TypeMap_IOR.h integrators_MonteCarloIntegrator_Impl.hh
gov_cca_CCAException.hh gov_cca_TypeMismatchException.cc integrators_MonteCarloIntegrator_Skel.cc
gov_cca_CCAExceptionType.hh gov_cca_TypeMismatchException.hh integrators_ParallelIntegrator.cc
gov_cca_CCAExceptionType_IOR.c gov_cca_TypeMismatchException_IOR.c integrators_ParallelIntegrator.hh
gov_cca_CCAExceptionType_IOR.h gov_cca_TypeMismatchException_IOR.h integrators_ParallelIntegrator_IOR.c
gov_cca_CCAException_IOR.c gov_cca_TypeMismatchException_Impl.cc integrators_ParallelIntegrator_IOR.h
gov_cca_CCAException_IOR.h gov_cca_TypeMismatchException_Impl.hh integrators_ParallelIntegrator_Impl.cc
gov_cca_CCAException_Impl.cc gov_cca_TypeMismatchException_Skel.cc integrators_ParallelIntegrator_Impl.hh
gov_cca_CCAException_Impl.hh gov_cca_Type_IOR.c integrators_ParallelIntegrator_Skel.cc
gov_cca_CCAException_Skel.cc gov_cca_Type_IOR.h randomgen_RandomGenerator.cc
gov_cca_Component.cc integrators.cca randomgen_RandomGenerator.hh
gov_cca_Component.hh integrators.hh randomgen_RandomGenerator_IOR.c
gov_cca_ComponentID.cc integrators_IOR.h randomgen_RandomGenerator_IOR.h
gov_cca_ComponentID.hh integrators_Integrator.cc

CCA
Common Component Architecture

10

namespace integrators {

/**
* Symbol "integrators.MonteCarloIntegrator" (version 1.0)
*/

class MonteCarloIntegrator_impl
{

private:
// Pointer back to IOR.
// Use this to dispatch back through IOR vtable.
MonteCarloIntegrator self;

// DO-NOT-DELETE splicer.begin(integrators.MonteCarloIntegrator._implementation)
// Put additional implementation details here...
gov::cca::Services frameworkServices;
// DO-NOT-DELETE splicer.end(integrators.MonteCarloIntegrator._implementation)

…

}; // end class MonteCarloIntegrator_impl

} // end namespace integrators

MonteCarloIntegrator Component (C++):Implementation Header

Reference to framework Services object

File: integrator-component-c++/integrators_MonteCarloIntegrator_Impl.hh

6

CCA
Common Component Architecture

11

integrators::MonteCarloIntegrator_impl::setServices (
/*in*/ gov::cca::Services services)

throw ()
{

// DO-NOT-DELETE splicer.begin(integrators.MonteCarloIntegrator.setServices)
frameworkServices = services;
if (frameworkServices._not_nil ()) {

gov::cca::TypeMap tm = frameworkServices.createTypeMap ();
gov::cca::Port p = self; // Babel required cast

// Port provided by all Integrator implementations
frameworkServices.addProvidesPort (p, "IntegratorPort",

"integrators.Integrator", tm);

// Ports used by MonteCarloIntegrator
frameworkServices.registerUsesPort ("FunctionPort", "functions.Function",

tm);
frameworkServices.registerUsesPort ("RandomGeneratorPort",

"randomgen.RandomGenerator", tm);
}
// DO-NOT-DELETE splicer.end(integrators.MonteCarloIntegrator.setServices)

}

MonteCarloIntegrator Component (C++): Framework Interaction

Save a pointer to the Services object

Port name

Port type
TypeMap reference

File: integrator-component-c++/integrators_MonteCarloIntegrator_Impl.cc

CCA
Common Component Architecture

12

double
integrators::MonteCarloIntegrator_impl::integrate (

/*in*/ double lowBound, /*in*/ double upBound, /*in*/ int32_t count) throw ()
{

// DO-NOT-DELETE splicer.begin(integrators.MonteCarloIntegrator.integrate)
gov::cca::Port port;
double sum = 0.0;
functions::Function function_m;
randomgen::RandomGenerator random_m;

random_m = frameworkServices.getPort ("RandomGeneratorPort");
function_m = frameworkServices.getPort ("FunctionPort");

for (int i = 0; i < count; i++) {
double x = random_m.getRandomNumber ();
sum = sum + function_m.evaluate (x);

}

frameworkServices.releasePort ("RandomGeneratorPort");
frameworkServices.releasePort ("FunctionPort");

return (upBound - lowBound) * sum / count;
// DO-NOT-DELETE splicer.end(integrators.MonteCarloIntegrator.integrate)

}

MonteCarloIntegrator Component (C++): integrate() Method

Get a RandomGenerator reference

Get a random number

Release ports

Evaluate function at random value

Get a Function reference

Return integral value

File: integrator-component-c++/integrators_MonteCarloIntegrator_Impl.cc

7

CCA
Common Component Architecture

13

subroutine
& integrators_MonteCarloIntegrator_setServices_impl(self,
& services)

implicit none
integer*8 self
integer*8 services

C DO-NOT-DELETE splicer.begin(integrators.MonteCarloIntegrator.setServices)
C Insert the implementation here...

integer*8 tm, excpt, retval, myport, myservices
common/MonteCarloState/myservices

myservices = services
call gov_cca_Services_addReference_f(services)
call gov_cca_Services_createTypeMap_f(myservices, tm, excpt)
call integrators_MonteCarloIntegrator__cast_f(self,

& 'gov.cca.Port', myport)
call gov_cca_Services_addProvidesPort_f(myservices, myPort,

& 'IntegratorPort', 'integrators.Integrator',
& tm, excpt)

C The ports I use
call gov_cca_Services_registerUsesPort_f(myservices,

& 'FunctionPort', 'functions.Function', tm, excpt)
call gov_cca_Services_registerUsesPort_f(myservices,

& 'RandomGeneratorPort',
& 'randomgen.RandomGenerator', tm, excpt)

C DO-NOT-DELETE splicer.end(integrators.MonteCarloIntegrator.setServices)
end

MonteCarloIntegrator Component (F77): Framework Interaction

Save a handle to the Services object

Port name

Port type

TypeMap reference

File: integrator-f77/integrators_MonteCarloIntegrator_Impl.f

TypeMap reference

Port type

Port name

Explicit cast to Port

CCA
Common Component Architecture

14

subroutine integrators_MonteCarloIntegrator_integrate_impl(self,
& lowBound, upBound, count, retval)

implicit none
integer*8 self
double precision lowBound, upBound
integer*4 count
double precision retval

C DO-NOT-DELETE splicer.begin(integrators.MonteCarloIntegrator.integrate)
C Insert the implementation here...

integer*8 excpt, port, funport, randport, myservices
common/MonteCarloState/myservices
double precision sum, h, x, temp
integer i

call gov_cca_Services_getPort_f(myservices, 'FunctionPort', port, excpt)
call gov_cca_Services__cast_f(port, 'functions.Function', funport)
call gov_cca_Services_getPort_f(myservices, 'RandomGeneratorPort', port, excpt)
call gov_cca_Services__cast_f(port, 'randomgen.RandomGenerator', randport)
sum = 0.0
do 50 i = 0, count, 1

call randomgen_RandomGenerator_getRandomNumber_f(randport, x)
x = lowBound + (upBound - lowBound) * x
call functions_Function_evaluate_f(funport, x, temp)
sum = sum + temp

50 end do
C Release ports

call gov_cca_Services_releasePort_f (myservices, 'FunctionPort', excpt)
call gov_cca_Services_releasePort_f (myservices, 'RandomGeneratorPort', excpt)
retval = (upBound - lowBound) * sum / count

C DO-NOT-DELETE splicer.end(integrators.MonteCarloIntegrator.integrate)
end

MonteCarloIntegrator Component (F77): integrate() Method

Get a RandomGenerator reference

Get a random number

Release portsEvaluate function at random value

Get a Function reference

Return integral value

File: integrator-f77/integrators_MonteCarloIntegrator_Impl.f

8

CCA
Common Component Architecture

15

Writing the C Wrapper
• At present, Ccaffeine requires some C functions for dynamic

loading of components; example for two components:
#include "integrators.hh"
#include "gov_cca_Component.hh"
#include <stdio.h>

extern "C" {
gov::cca::Component create_MonteCarloIntegrator() {

::gov::cca::Component ex = integrators::MonteCarloIntegrator::_create();
return ex;

}
gov::cca::Component create_ParallelIntegrator() {

::gov::cca::Component ex = integrators::ParallelIntegrator::_create();
return ex;

}
char **getComponentList() {

static char *list[3] ;
list[0] = "create_MonteCarloIntegrator integrators.MonteCarloIntegrator";
list[1] = “create_ParallelIntegrator integrators.ParallelIntegrator”;
list[2] = 0;
return list;

}
}

File: integrator-component-c++/integrators_Integrator_wrapper_Impl.cc

Create a MonteCarloIntegrator instance

Create a ParallelIntegrator instance

Return a list of components
contained in this dynamic library

C wrapper function name Component name

CCA
Common Component Architecture

16

MonteCarloIntegrator: integrators.cca
• Ccaffeine-specific file specifying the name of

the dynamic library and creation method for
each component

!date=Thu Aug 15 14:53:23 CDT 2002
!location=
!componentType=babel
libIntegrator-component-c++.so
create_MonteCarloIntegrator integrators.MonteCarloIntegrator
create_ParallelIntegrator integrators.ParallelIntegrator

C wrapper function name Component name

Component type: “babel” or “classic” (C++)

File: integrator-component-c++/integrators.cca

Note: This mechanism is expected to change soon

9

CCA
Common Component Architecture

17

double
integrators::ParallelIntegrator_impl::integrate (/*in*/ double lowBound, /*in*/ double upBound,

/*in*/ int32_t count) throw ()
{

// DO-NOT-DELETE splicer.begin(integrators.ParallelIntegrator.integrate)
gov::cca::Port port;
functions::Function function_m;

// Get Function port
function_m = frameworkServices.getPort("FunctionPort");

int n, myid, numprocs, i;
double result, myresult, h, sum, x;
int namelen;
char processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Get_processor_name(processor_name, &namelen);

fprintf(stderr, "Process %d on %s: number of intervals = %d\n", myid,
processor_name, count);

fflush(stderr);
// … Continued on next page…

Parallel Example: MidpointIntegrator integrate() Method

Parallel environment details

Get a Function reference

File: integrator-component-c++/integrators_ParallelIntegrator_Impl.cc

CCA
Common Component Architecture

18

// …
MPI_Bcast(&count, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (count == 0) {

return -1;
} else {

h = (upBound - lowBound) / (double) count;
sum = 0.0;
for (i = myid + 1; i <= count; i += numprocs) {

x = h * ((double) i - 0.5);
sum += function_m.evaluate(x);

}
myresult = h * sum;

MPI_Reduce(&myresult, &result, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);

}

frameworkServices.releasePort("FunctionPort");
printf("result is %f\n", result);
return result;

// DO-NOT-DELETE splicer.end(integrators.ParallelIntegrator.integrate)
}

Parallel Example: MidpointIntegrator integrate() Method
(continued)

Compute integral
in parallel

Release port

Evaluate function

Return integral value

File: integrator-component-c++/integrators_ParallelIntegrator_Impl.cc

10

Writing ComponentsCCA
Common Component Architecture

19

RandRandomGenerator Component
1. Use Babel to generate C++ skeletons and

implementation files for random.sidl
2. Fill in implementation details in random-component-

c++/:
• randomgen_RandRandomGenerator_Impl.hh
• randomgen_RandRandomGenerator_Impl.cc

3. Create C wrapper functions (for component
creation).

• randomgen_RandomGenerator_wrapper_Impl.cc
4. Create makefile and build dynamic library

• Makefile
• libRandom-component-c++.so

5. Create random.cca (Ccaffeine-specific)

CCA
Common Component Architecture

20

version randomgen 1.0;

package randomgen {

interface RandomGenerator extends gov.cca.Port {
double getRandomNumber();

}

class RandRandomGenerator implements-all RandomGenerator,
gov.cca.Component { }

}

RandomGenerator Port

RandRandomGenerator

RandomGeneratorPort

randomgen.RandomGenerator gov.cca.Component

RandRandomGenrator

Inheritance Tree
Relevant files:
random.sidl

File: random.sidl

11

CCA
Common Component Architecture

21

namespace randomgen {

/**
* Symbol “randomgen.RandRandomGenerator" (version 1.0)
*/

class RandRandomGenerator_impl
{

private:
// Pointer back to IOR.
// Use this to dispatch back through IOR vtable.
RandRandomGenerator self;

// DO-NOT-DELETE splicer.begin(randomgen.RandRandomGenerator._implementation)
// Put additional implementation details here...
gov::cca::Services frameworkServices;
// DO-NOT-DELETE splicer.end(randomgen.RandRandomGenerator._implementation)

…

}; // end class RandRandomGenerator_impl

} // end namespace randomgen

RandRandomGenerator Component:Implementation Header

Reference to framework Services object

File: random-component-c++/randomgen_RandRandomGenerator_Impl.hh

CCA
Common Component Architecture

22

randomgen::RandRandomGenerator_impl::setServices (
/*in*/ gov::cca::Services services)

throw ()
{

// DO-NOT-DELETE splicer.begin(randomgen.RandRandomGenerator.setServices)
frameworkServices = services;
if (frameworkServices._not_nil ()) {

gov::cca::TypeMap tm = frameworkServices.createTypeMap ();

gov::cca::Port p = self; // Babel required cast

// Port provided by RandomGenerator implementations
frameworkServices.addProvidesPort (p, “RandomGeneratorPort",

“randomgen.RandomGenerator", tm);

// No ports are used by this RandomGenerator implementation
}
// DO-NOT-DELETE splicer.end(randomgen.RandRandomGenerator.setServices)

}

RandRandomGenerator Component: Framework Interaction

Save a pointer to the Services object

Port name

Port type TypeMap reference

File: random-component-c++/randomgen_RandRandomGenerator_Impl.cc

12

Writing ComponentsCCA
Common Component Architecture

23

PiFunction Component
1. Use Babel to generate C++ skeletons and

implementation files for function.sidl
2. Fill in implementation details in function-component-

c++/:
• functions_PiFunction_Impl.hh
• functions_PiFunction_Impl.cc

3. Create C wrapper functions (for component
creation).

• functions_Function_wrapper_Impl.cc
4. Create makefile and build dynamic library

• Makefile
• libFunction-component-c++.so

5. Create functions.cca (Ccaffeine-specific)

CCA
Common Component Architecture

24

Function Port
version functions 1.0;

package functions {

interface Function extends gov.cca.Port {
double evaluate(in double x);

}

class PiFunction implements-all Function,
gov.cca.Component { }

class LinearFunction implements-all Function,
gov.cca.Component { }

class NonlinearFunction implements-all Function,
gov.cca.Component { }

}

PiFunction

FunctionPortintegrators.Function gov.cca.Component

PiFunction

Inheritance Tree
Relevant files:
function.sidl

File: function.sidl

13

CCA
Common Component Architecture

25

namespace functions {

/**
* Symbol “function.PiFunction" (version 1.0)
*/

class PiFunction_impl
{

private:
// Pointer back to IOR.
// Use this to dispatch back through IOR vtable.
PiFunction self;

// DO-NOT-DELETE splicer.begin(functions.PiFunction._implementation)
// Put additional implementation details here...
gov::cca::Services frameworkServices;
// DO-NOT-DELETE splicer.end(functions.PiFunction._implementation)

…

}; // end class PiFunction_impl

} // end namespace functions

PiFunction Component:Implementation Header

Reference to framework Services object

File: function-component-c++/functions_PiFunction_Impl.hh

CCA
Common Component Architecture

26

functions::PiFunction_impl::setServices (
/*in*/ gov::cca::Services services)

throw ()
{

// DO-NOT-DELETE splicer.begin(functions.PiFunction.setServices)
frameworkServices = services;
if (frameworkServices._not_nil ()) {

gov::cca::TypeMap tm = frameworkServices.createTypeMap ();

gov::cca::Port p = self; // Babel required cast

// Port provided by Function implementations
frameworkServices.addProvidesPort (p, “FunctionPort",

“functions.Function", tm);

// No Ports are used by this Function implementation
}
// DO-NOT-DELETE splicer.end(functions.PiFunction.setServices)

}

PiFunction Component: Framework Interaction

Save a pointer to the Services object

Port name

Port type TypeMap reference

File: function-component-c++/functions_PiFunction_Impl.cc

14

Writing ComponentsCCA
Common Component Architecture

27

Driver Component
1. Use Babel to generate C++ skeletons and

implementation files for driver.sidl
2. Fill in implementation details in driver-component-

c++/:
• tutorial_Driver_Impl.hh
• tutorial_Driver_Impl.cc

3. Create C wrapper functions (for component
creation).

• tutorial_Driver_wrapper_Impl.cc
4. Create makefile and build dynamic library

• Makefile
• libDriver-component-c++.so

5. Create driver.cca (Ccaffeine-specific)

Writing ComponentsCCA
Common Component Architecture

28

Driver SIDL Definition
• Driver implements standard

gov.cca.ports.GoPort
• No additional interfaces defined
version tutorial 1.0;

package tutorial {

class Driver implements-all gov.cca.ports.GoPort,
gov.cca.Component

{
}

}

15

CCA
Common Component Architecture

29

File: driver-component-c++/tutorial_Driver_Impl.cc

tutorial::Driver_impl::setServices (
/*in*/ gov::cca::Services services)

throw ()
{

// DO-NOT-DELETE splicer.begin(tutorial.Driver.setServices)
frameworkServices = services;
if (frameworkServices._not_nil ()) {

gov::cca::TypeMap tm = frameworkServices.createTypeMap ();

gov::cca::Port p = self; // Babel required cast

// Port provided by Function implementations
frameworkServices.addProvidesPort (p, “GoPort",

“gov.cca.ports.GoPort", tm);

// Port used by the Driver component
frameworkServices.registerUsesPort ("IntegratorPort",

"integrators.Integrator", tm);
}
// DO-NOT-DELETE splicer.end(tutorial.Driver.setServices)

}

Save a pointer to the Services object

Port name

Port type TypeMap pointer

Driver Component: Framework Interaction

CCA
Common Component Architecture

30

File: driver-component-c++/tutorial_Driver_Impl.cc

int32_t
tutorial::Driver_impl::go () throw ()
{

// DO-NOT-DELETE splicer.begin(tutorial.Driver.go)
double value;
int count = 100000; // number of intervals/random samples
double lowerBound = 0.0, upperBound = 1.0;

// Ports
::gov::cca::Port port;
::integrators::Integrator integrator;

port = frameworkServices.getPort("IntegratorPort");
integrator = port;

value = integrator.integrate (lowerBound, upperBound, count);

fprintf(stdout,"Value = %lf\n", value);

frameworkServices.releasePort ("IntegratorPort");
return 0;

// DO-NOT-DELETE splicer.end(tutorial.Driver.go)
}

Get an Integrator reference

Invoke the integrate method

Output integration result

Release ports

Driver Component: GoPort implementation

16

Writing ComponentsCCA
Common Component Architecture

31

Build Issues
• Dynamic (shared) libraries

– For each component or a set of components, build
a dynamic library

– No linking of libraries for components on which
current component depends

– Non-component libraries on which a component
depends directly (e.g., BLAS), must be linked
explicitly when the shared library is created

CCA
Common Component Architecture

32

Complete Makefile for MonteCarloIntegrator
include babel.make

WRAPPERS = integrators_Integrator_wrapper_Impl.cc

INCLUDES = -I$(BABEL_ROOT)/include -I. -I$(MPI_HOME)/include

all: libIntegrator-component-c++.so

.c.o:
gcc -g -fPIC $(INCLUDES) -c $< -o $(<:.c=.o)

.cc.o:
g++ -g -fPIC $(INCLUDES) -c $< -o $(<:.cc=.o)

OBJS = $(IMPLSRCS:.cc=.o) $(IORSRCS:.c=.o) $(SKELSRCS:.cc=.o) \
$(STUBSRCS:.cc=.o) $(WRAPPERS:.cc=.o)

LIBS = -Wl,-rpath,$(BABEL_ROOT)/lib -L$(BABEL_ROOT)/lib -lsidl

libIntegrator-component-c++.so: $(OBJS)
g++ -shared $(INCLUDES) $(OBJS) -o $@ $(LIBS)

clean:
$(RM) *.o libIntegrator-component-c++.so

File: integrator-component-c++/Makefile

17

Writing ComponentsCCA
Common Component Architecture

33

Running the Example

Next: Using the Ccaffeine framework

1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

Introduction to the Ccaffeine
Framework

Using CcaffeineCCA
Common Component Architecture

2

Outline

• What is a CCA Framework and what is
Ccaffeine?

• How can I slip my own component into
Ccaffeine?

• How do I run Ccaffeine?
• Live Demo – does it work?

2

Using CcaffeineCCA
Common Component Architecture

3

CCA What CCA compliant framework
is expected to do …

• Exchange interfaces among components without one
component needing to know more about the other
than the interface itself.

Component 1 Component 2

CCAServices
2

CCAServices

4

registerUsesPort("A")1
addProvidesPort(,"A")

= getPort("A")

3

Port

Port

Port

Port

Using CcaffeineCCA
Common Component Architecture

4

Interactive Parallel Components:
what Ccaffeine does

• Executable ccafe-client:
– PVM, MPI, or whatever is used for

communication between clients.
– Muxer enforces “single process

image” of SPMD parallel computing.

• How To:
http://www.cca-forum.org/ccafe/
– Build Ccaffeine
– Run Ccaffeine

http://www.cca-forum.org/ccafe/

3

Using CcaffeineCCA
Common Component Architecture

5

Ccaffeine comes in two other flavors*

and a GUI.

• Single process executable:
ccafe-single
– really useful for debugging

• Batch executable: ccafe-batch
– when all you want to do is run it.

*flavor: same executable, different name and behavior.

Using CcaffeineCCA
Common Component Architecture

6

How to build Ccaffeine

• Have a look at
http://www.cca-forum.org/ccafe
– Obtain the required packages

• Ccaffeine tar ball download
• gcc (2.95.3, 2.96, not 3.x)
• Java (>jdk1.2)
• BLAS, LAPACK (any recent)
• BOOST headers
• Babel
• Ruby (any recent, if you have Linux, probably there now)

4

Using CcaffeineCCA
Common Component Architecture

7

How to build Ccaffeine (cont’d)

• Untar Ccaffeine-xxx.tgz in build dir
– 3 directories appear cca-spec-babel (the spec),

cca-spec-classic (old C++ spec), dccafe
• Run configure

– If confused type “configure –help”

(cd ./cca-spec-babel; configure --with-babel=/usr/local/babel \
--with-jdk12=/usr/local/java;make)

(cd ./cca-spec-classic;configure;make)

(cd ./dccafe; ./configure --with-cca-babel=`pwd`/../cca-spec-babel \
--with-cca-classic=`pwd`/../cca-spec-classic \
--with-mpi=/usr/local/mpich --with-jdk12=/usr/local/java \
--with-lapack=/home/rob/cca/dccafe/../LAPACK/liblapack.a \
--with-blas=/home/rob/cca/dccafe/../LAPACK/libblas.a; make)

Using CcaffeineCCA
Common Component Architecture

8

Ccaffeine build (cont’d)

• The Ccaffeine make will take ~5-10 min.
• Look in:

http://www.cca-forum.org/ccafe/build-log.html
for a complete listing from Rob’s laptop.

If successful you should get:
===

Testing the Ccaffeine build ...

didn't crash or hang up early ... looks like it is working.

done with Ccaffeine tests.
===

5

Using CcaffeineCCA
Common Component Architecture

9

How to run Ccaffeine:

• Ccaffeine interactive language
– Used to configure batch and interactive sessions
– Allows useful “defaults”
– Allows the GUI to talk over a socket

Using CcaffeineCCA
Common Component Architecture

10

Ccaffeine scripting language is for
those who have grown tired of the GUI

• look in:
http://www.cca-forum.org/ccafe/ccafe-man/Ccafe_Manual.html
for all the commands

• The GUI is just a pretty front end that speaks this
scripting language to the backend

You can talk directly to Ccaffeine by typing:
prompt> ccafe-single
MPI_Init called in CmdLineClientMain.cxx

my rank: 0, my pid: 25989

... (output cruft deleted)
cca>help
(complete listing of commands and what they do)

6

Using CcaffeineCCA
Common Component Architecture

11

Quick run-through of the Ccaffeine
scripting language

• Scripting language does everything that the
GUI does

• Warning: there are two of files that Ccaffeine
uses:
– “rc” and script files for building and running apps
– GUI “.bld” files that are state saved by the

Ccaffiene GUI.

These are not the same and will give, sometimes
spectacular, undefined behavior.

Using CcaffeineCCA
Common Component Architecture

12

Magic number and repository function:
the top of the script

• Must tell the framework where the components are (“path”)
and which ones you want loaded into the “palette”

#!ccaffeine bootstrap file.
------- don't change anything ABOVE this line.-------------
where to find components:
path set /home/rob/cca/component
load components into the “pallet”
repository get functions.PiFunction
repository get integrators.MonteCarloIntegrator
repository get integrators.MidPointIntegrator
repository get integrators.ParallelIntegrator
repository get randomgen.RandRandomGenerator
repository get tutorial.driver

• At this point no components are instantiated, but are simply
known to the system

7

Using CcaffeineCCA
Common Component Architecture

13

Now start instantiating the components
that will form your application

• Use the “create” function to make an instance of a
component and name it
– first arg is the class name of the component and the second

is the instance name you want it to have:

Instantiate and name components that have been made
known to the framework

create randomgen.RandRandomGenerator rand

f(x) = 4.0/(1 + x^2)

create functions.PiFunction function
create tutorial.Driver driver

Using CcaffeineCCA
Common Component Architecture

14

Connect the components to form a
complete application

• Connect takes 4 arguments, all of them are instance
names of components or ports. In order they are:

1. Using component instance name (named in “create”)
2. Uses port instance name (name given to it by the component)
3. Providing component instance name
4. Provides port instance name

• Script from our example code:
Connect uses and provides ports
connect integrator FunctionPort function FunctionPort
connect integrator RandomGeneratorPort rand RandomGeneratorPort
connect driver IntegratorPort integrator IntegratorPort

8

Using CcaffeineCCA
Common Component Architecture

15

Time to see if it works: the “go”
command

• The “go” command takes a component
instance and a port instance name as an
argument
– only the named port on the named component

are go()’ed:

Good to go()
go driver GoPort

• At this point Ccaffeine gets completely out of
the way
– So much so that it will not respond until (or

if) your application returns from the
invocation of the “go()” method

– There is only one thread of control

Using CcaffeineCCA
Common Component Architecture

16

CCA is working on a component
delivery specification, until then

Ccaffeine has some specific req’ts
• “.cca” file describes what the format of the

component is: “Babel”, or old-style “Classic.”
• Component wrapper class

– introduces to the framework one or more
components

– contained in the “.so” file with the component(s)
– will go away for Babel components

9

Using CcaffeineCCA
Common Component Architecture

17

Example “.cca” file:
MonteCarloIntegrator in integrators.cca

• Ccaffeine-specific file specifying the name of
the dynamic library and creation method for
each component

!date=Thu Aug 15 14:53:23 CDT 2002
!location=
!componentType=babel
libIntegrator-component-c++.so
create_MonteCarloIntegrator integrators.MonteCarloIntegrator

C wrapper function name Component name

Component type: “babel” or “classic” (C++)

“.so” Library

Using CcaffeineCCA
Common Component Architecture

18

Wrapper C functions

• Auto-gen the wrapper C code file:
– “genDL” scripts provided by Ccaffeine.
– genDLWrapperStrict to generate the “.cca” file.
– usage: genDLWrapper <component class name>

• Creates the appropriate symbols to be
included in the “.so” file so that Ccaffeine can
find and instantiate the component

• In the case of Babel components this step is
unnecessary and is soon to be removed

10

Using CcaffeineCCA
Common Component Architecture

19

What you are able to do now that you
couldn’t before …

• Run on parallel cluster or proprietary machine
with CCA components that you didn’t write
– Steve Jobs: “the best software is software I didn’t

have to write” – not that he actually ever did
• Develop incrementally & interactively in serial

and parallel
– Detach, go have lunch and reattach

Using CcaffeineCCA
Common Component Architecture

20

Showing How it All Works

The Scripts

Next: Complex CCA Applications

1

Ccaffeine Convenience ScriptsCCA
Common Component Architecture

1

setup_path script

export SIDL_DLL_PATH=“”

DL_PATH=$BABEL_ROOT/lib
for i in `ls $TUT_COMP_ROOT | grep component`; do

DL_PATH=$DL_PATH:$TUT_COMP_ROOT/$I ;
done

export LD_LIBRARY_PATH=$DL_PATH
export SIDL_DLL_PATH=`echo $LD_LIBRARY_PATH | sed 's/:/;/g'`

Included in other scripts to setup paths to components
and libraries.

Ccaffeine Convenience ScriptsCCA
Common Component Architecture

2

run_cmdline script

#!/bin/sh

export TUT_COMP_ROOT=`pwd`

• $TUT_COMP_ROOT/setup_path

$CCAFE_HOME/cxx/dc/user_iface/ccafe-single --ccafe-rc $1

•Run a single interactive job using command line.

•Format: run_cmdline <full_path_to_rc_file>

dot

2

Ccaffeine Convenience ScriptsCCA
Common Component Architecture

3

run_gui script

#!/bin/sh
export TUT_COMP_ROOT=`pwd`

• $TUT_COMP_ROOT/setup_path

$CCAFE_HOME/cxx/dc/user_iface/ccafe-single --type server --port 3314 \
--ccafe-rc $1 &
sleep 2
$CCAFE_HOME/bin/runGUI --builderPort 3314

•Run a single interactive job using the GUI

•Format: run_gui <full_path_to_gui_rc_file>

Ccaffeine Convenience ScriptsCCA
Common Component Architecture

4

run_gui_parallel script (1)

#!/bin/sh -f
Format: run_gui_parallel <num_proc> <full_path_to_gui_rc_file>
Configuration stuff
export mpirun=/usr/local/bin/mpirun
export CLASSPATH=$CCAFE_HOME/java:$CLASSIC_CCA_ROOT/java
export gui=$CCAFE_HOME/bin/runGUI
export TUT_COMP_ROOT=`pwd`

export javaopts=" -Djava.compiler=NONE -classpath $CLASSPATH"
export CCAFFEINE_OUT_DIR=`pwd`
export procfile="/tmp/processors.$$"
export machfile="/tmp/machines.$$"

This tells CCAFFEINE to put the frameworks output streams
into the current directory, into files named pOutN and
pErrN, where N is the process number (starting from 0).
echo "Look for application output in pOut[01] and pErr[01] in
this directory"

3

Ccaffeine Convenience ScriptsCCA
Common Component Architecture

5

run_gui_parallel script (2)

Create a 'processors' file to tell the framework where to
find itself and the GUI.
echo 127.0.0.1 server > $procfile
i=0
while [$i -lt $1]
do

echo $i client >> $procfile
i=`expr $i + 1`

done
Create the mpirun machines file
echo 127.0.0.1 > $machfile
Start the GUI and wait briefly to give it a chance to
initialize
echo Launching multiplexer...
java $javaopts \

gov.sandia.ccaffeine.dc.distributed.MuxingProcess \
--name 127.0.0.1 --timeout 0 --file $procfile &

sleep 3

Ccaffeine Convenience ScriptsCCA
Common Component Architecture

6

run_gui_parallel script (3)

Launch the framework
echo Launching framework...
$mpirun -np $1 -machinefile $machfile $TUT_COMP_ROOT/run_client\

--file $procfile --ccafe-rc $2 &
sleep 5
Launch GUI
echo Launching GUI...
$gui

Look for any stray files or processes
echo Cleaning up
rm -f $procfile $machfile
This may be overkill
killall ccafe-client\

gov.sandia.ccaffeine.dc.distributed.MuxingProcess \
runGUI \
gov.sandia.ccaffeine.dc.user_iface.BuilderClient java

4

Ccaffeine Convenience ScriptsCCA
Common Component Architecture

7

run_client script

#!/bin/sh
TUT_COMP_ROOT cannot be `pwd` for mpirun reasons

export TUT_COMP_ROOT=/home/elwasif/CCA/tutorial/src/sidl

• $TUT_COMP_ROOT/setup_path

$CCAFE_HOME/cxx/dc/user_iface/ccafe-client $*

Ccaffeine Convenience ScriptsCCA
Common Component Architecture

8

tutorial_rc_gui Ccaffeine rc file

#!ccaffeine bootstrap file.
------- don't change anything ABOVE this line.-------------
path set /home/elwasif/CCA/tutorial/src/sidl/random-component-c++
path append /home/elwasif/CCA/tutorial/src/sidl/function-component-c++
path append /home/elwasif/CCA/tutorial/src/sidl/integrator-component-c++
path append /home/elwasif/CCA/tutorial/src/sidl/driver-component-c++

repository get randomgen.RandRandomGenerator
repository get functions.LinearFunction
repository get functions.PiFunction
repository get functions.NonlinearFunction
repository get integrators.MonteCarloIntegrator
repository get integrators.MidpointIntegrator
repository get integrators.ParallelIntegrator
repository get tutorial.Driver

Page 1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

A Look at More Complex
Component-Based Applications

Complex Applications CCA
Common Component Architecture

2

Modern Scientific Software Development
• Terascale computing will enable high-fidelity calculations based on

multiple coupled physical processes and multiple physical scales
– Adaptive algorithms and high-order discretization strategies
– Composite or hybrid solution strategies
– Sophisticated numerical tools

Discretization

Algebraic Solvers

Data Redistribution

Mesh

Data Reduction

Physics Modules

Optimization

Derivative Computation

Collaboration

Diagnostics

Steering

Visualization

Adaptive Solution

Time Evolution

Page 2

Complex Applications CCA
Common Component Architecture

3

Overview

• Using components in high performance simulation
codes
– Examples of increasing complexity
– Performance

• Single processor
• Scalability

• Developing components for high performance
simulation codes
– Strategies for thinking about your own application
– Developing interoperable and interchangeable components

Complex Applications CCA
Common Component Architecture

4

Our Starting Point

∇2ϕ (x,y) = 0 ∈ [0,1] x [0,1]
ϕ(0,y)=0 ϕ(1,y)=sin (2πy)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Page 3

Complex Applications CCA
Common Component Architecture

5

Numerical Solution of Example 1

• Physics: Poisson’s equation
• Grid: Unstructured triangular mesh
• Discretization: Finite element method
• Algebraic Solvers: PETSc (Portable

Extensible Toolkit for Scientific Computation)
• Visualization: VTK tool
• Original Language: C

Complex Applications CCA
Common Component Architecture

6

Creating Components: Step 1
• Separate the application code into well-defined

pieces that encapsulate functionalities
– Decouple code along numerical functionality

• Mesh, discretization, solver, visualization
• Physics is kept separate

– Determine what questions each component can ask of and
answer for other components (this determines the ports)

• Mesh provides geometry and topology (needed by
discretization and visualization)

• Mesh allows user defined data to be attached to its entities
(needed by physics and discretization)

• Mesh does not provide access to its data structures
– If this is not part of the original code design, this is by far the

hardest, most time-consuming aspect of componentization

Page 4

Complex Applications CCA
Common Component Architecture

7

Creating the Components: Step 2
• Writing C++ Components

– Create an abstract base class for each port
– Create C++ objects that inherit from the abstract base port

class and the CCA component class
– Wrap the existing code as a C++ object
– Implement the setServices method

• This process was significantly less time consuming
(with an expert present) than the decoupling process
– Lessons learned

• Definitely look at an existing, working example for the targeted
framework

• Experts are very handy people to have around ;-)

Complex Applications CCA
Common Component Architecture

8

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

Page 5

Complex Applications CCA
Common Component Architecture

9

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Mesh Component
– Provides geometry, topology, and

boundary information
– Provides the ability to attach user

defined data as tags to mesh
entities

– Is used by the driver,
discretization and visualization
components

• The Mesh Component
– Provides geometry, topology, and

boundary information
– Provides the ability to attach user

defined data as tags to mesh
entities

– Is used by the driver,
discretization and visualization
components

Complex Applications CCA
Common Component Architecture

10

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, Laplacian, scalar terms)

– Driver determines which terms are
included and their coefficients

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition matrix manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, Laplacian, scalar terms)

– Driver determines which terms are
included and their coefficients

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition matrix manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

Page 6

Complex Applications CCA
Common Component Architecture

11

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, laplacian, scalar terms)

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, laplacian, scalar terms)

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

• The Solver Component
– Provides access to vector and

matrix operations (e.g., create,
destroy, get, set)

– Provides a “solve” functionality for
a linear operator

• The Solver Component
– Provides access to vector and

matrix operations (e.g., create,
destroy, get, set)

– Provides a “solve” functionality for
a linear operator

Complex Applications CCA
Common Component Architecture

12

The Componentized Example

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Driver Component
– Responsible for the overall

application flow
– Initializes the mesh, discretization,

solver and visualization
components

– Sets the physics parameters and
boundary condition information

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Mesh Component
– Provides geometry and topology

information
– Provides the ability to attach user

defined data to mesh entities
– Is used by the driver,

discretization and visualization
components

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, laplacian, scalar terms)

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

• The Discretization Component
– Provides a finite element

discretization of basic operators
(gradient, laplacian, scalar terms)

– Provides mechanisms for general
Dirichlet and Neumann boundary
condition manipulations

– Computes element matrices and
assembles them into the global
stiffness matrix via set methods
on the solver

– Gathers and scatters vectors to
the mesh (in this case ϕ)

• The Solver Component
– Provides access to vector and

matrix operations (e.g., create,
destroy, get, set)

– Provides a “solve” functionality for
a linear operator

• The Solver Component
– Provides access to vector and

matrix operations (e.g., create,
destroy, get, set)

– Provides a “solve” functionality for
a linear operator

• The Visualization Component
– Uses the mesh component to print

a vtk file of ϕ on the unstructured
triangular mesh

– Assumes user data is attached to
mesh vertex entities

• The Visualization Component
– Uses the mesh component to print

a vtk file of ϕ on the unstructured
triangular mesh

– Assumes user data is attached to
mesh vertex entities

Page 7

Complex Applications CCA
Common Component Architecture

13

The next step… time dependence
δϕ/δt = ∇2ϕ (x,y,t) ∈ [0,1] x [0,1]

ϕ(0,y,t)=0 ϕ(1,y,t)=.5sin(2πy)cos(t/2)
δϕ/δy(x,0) = δϕ/δy(x,1) = 0
ϕ(x,y,0)=sin(.5πx) sin (2πy)

Time Evolution

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Data RedistributionDistributed Arrays

Complex Applications CCA
Common Component Architecture

14

Some things change…
• Requires a time integration component

– Based on the LSODE library (LLNL)
– Component implementation developed by Ben Allan (SNL)

• Uses a new visualization component
– Based on AVS
– Requires an MxN data redistribution component
– Developed by Jim Kohl (ORNL)

• The MxN redistribution component requires a Distributed Array
Descriptor component
– Similar to HPF arrays
– Developed by David Bernholdt (ORNL)

• The driver component changes to accommodate the new
physics

Page 8

Complex Applications CCA
Common Component Architecture

15

… and some things stay the same

• The mesh component doesn’t change
• The discretization component doesn’t change
• The solver component doesn’t change

– What we use from the solver component changes
– Only vectors are needed

Complex Applications CCA
Common Component Architecture

16

The CCA wiring diagram

Reused
Integration
Visualization
Driver/Physics

Page 9

Complex Applications CCA
Common Component Architecture

17

What did this exercise teach us?

• It was easy to incorporate the functionalities of
components developed at other labs and institutions
given a well-defined interface and header file.
– In fact, some components (one uses and one provides) were

developed simultaneously across the country from each
other after the definition of a header file.

– Amazingly enough, they usually “just worked” when linked
together (and debugged individually).

• In this case, the complexity of the component-based
approach was higher than the original code
complexity.
– Partially due to the simplicity of this example
– Partially due to the limitations of the some of the current

implementations of components

Complex Applications CCA
Common Component Architecture

18

One more layer of complexity… AMR

The same physics but use a block structured
adaptive mesh

Time Evolution

Discretization

Algebraic Solvers

Mesh

Physics Modules

Visualization

Data RedistributionDistributed Arrays

Adaptive Solution

Discretization

Page 10

Complex Applications CCA
Common Component Architecture

19

Adaptive Mesh Refinement

• Used to accurately capture a wide spectrum of
length scales

• Many different techniques
– We use structured axis-aligned patches
– Provided by the GrACE library

• Start with a uniform coarse mesh
– Identify regions needing refinement
– Collate into rectangular patches
– Impose finer mesh in patches
– Recurse and obtain a mesh hierarchy

Complex Applications CCA
Common Component Architecture

20

Some things change…

• The mesh component changes
– Block structured AMR based on GRACE

• The discretization component changes
– Finite difference on patches
– BC handled differently

• The driver component changes

Page 11

Complex Applications CCA
Common Component Architecture

21

… and some things stay the same

• The integration component stays the same
• The solver component stays the same
• The data redistribution component stays the

same
• The distributed array component stays the

same
• The visualization component stays the same

Complex Applications CCA
Common Component Architecture

22

The component implementation

Reused
Physics
AMR Mesh
Driver

Page 12

Complex Applications CCA
Common Component Architecture

23

Beyond the heat equation…

• Flame Approximation
– H2-Air mixture; ignition via 3 hot-spots
– 9-species, 19 reactions, stiff chemistry

• Governing equation

• Domain
– 1cm X 1cm domain
– 100x100 coarse mesh
– finest mesh = 12.5 micron.

• Timescales
– O(10ns) to O(10 microseconds)

ii
i wY
t
Y

&+∇∇=
∂
∂ α.

Complex Applications CCA
Common Component Architecture

24

Numerical Solution

• Adaptive Mesh Refinement: GrACE
• Stiff integrator: CVODE (LLNL)
• Diffusive integrator: 2nd Order Runge Kutta
• Chemical Rates: legacy f77 code (SNL)
• Diffusion Coefficients: legacy f77 code (SNL)
• New code less than 10%

Page 13

Complex Applications CCA
Common Component Architecture

25

The CCA Wiring Diagram

Reused
Slow Time Scale Integration
Fast Time Scale Integration
Driver/Physics

Complex Applications CCA
Common Component Architecture

26

Evolution of the Solution

Temperature

OH Profile

Page 14

Complex Applications CCA
Common Component Architecture

27

The need for AMR

• H2O2 chemical subspecies profile
– Only 100 microns thick (about 10 fine level cells)
– Not resolvable on coarsest mesh

Complex Applications CCA
Common Component Architecture

28

Shock-Hydrodynamics

• Governing equation

• Domain
– Square cross section shock-tube

• Experiment
– Two gases are separated by a clean interface
– Shock moves from left to right and interacts with the

interface
• Deposits vorticity
• Reflects
• Refracts

},,,,{)()(ρζρρρρ EvuUUGUFU yxt =+=

Page 15

Complex Applications CCA
Common Component Architecture

29

Interesting features

• Shock & interface are sharp
discontinuities which need
refinement

• Shock deposits vorticity – a
governing quantity for turbulence,
mixing, …

• If there is insufficient refinement
– under predict vorticity
– slower mixing/turbulence.

Complex Applications CCA
Common Component Architecture

30

The CCA Wiring Diagram

Reused
Solver
Driver/Physics

Page 16

Complex Applications CCA
Common Component Architecture

31

• Given a rectangular 2-dimensional domain
and boundary values along the edges of the
domain

• Find the surface with minimal area that
satisfies the boundary conditions, i.e.,
compute

min f(x), where f: R → R
• Solve using optimization

components based on
TAO (ANL)

Unconstrained Minimization Problem

n

Complex Applications CCA
Common Component Architecture

32

Unconstrained Minimization Using a Structured Mesh

Reused
TAO Solver
Driver/Physics

Page 17

Complex Applications CCA
Common Component Architecture

33

Molecular Geometry Optimization

• Electronic structure components based on
NWChem (PNNL) and MPQC (SNL)

• Optimization components based on TAO (ANL)
• Linear algebra components based on Global

Arrays (PNNL) and PETSc (ANL)

Relativistic quantum
chemistry calculation of
(UO) (CO) using
NWChem. Image
courtesy of Wibe
deJong, PNNL.

2 3 3 6

Wiring diagram using Ccaffeine framework and:

Complex Applications CCA
Common Component Architecture

34

Component Overhead
• Negligible overhead for

component implementation
and abstract interfaces when
using appropriate levels of
abstraction

• Linear solver component
currently supports any
methods available via the
ESI interfaces to PETSc and
Trilinos; plan to support
additional interfaces the
future, e.g., those under
development within the
TOPS center

• Here: Use the conjugate
gradient method with no-fill
incomplete factorization
preconditioning

Aggregate time for linear solver component in
unconstrained minimization problem.

Page 18

Complex Applications CCA
Common Component Architecture

35

Overhead from Component Invocation

• Invoke a component with
different arguments

• Array
• Complex
• Double Complex

• Compare with f77 method
invocation

• Environment
– 500 MHz Pentium III
– Linux 2.4.18
– GCC 2.95.4-15

• Components took 3X longer
• Ensure granularity is

appropriate!
• Paper by Bernholdt, Elwasif,

Kohl and Epperly

241ns86nsDouble
complex

209ns75nsComplex

224ns80 nsArray

Componentf77Function arg
type

Complex Applications CCA
Common Component Architecture

36

Scalability on a Linux Cluster

• Newton method with
line search

• Solve linear systems
with the conjugate
gradient method and
block Jacobi
preconditioning (with
no-fill incomplete
factorization as each
block’s solver, and 1
block per process)

• Negligible component
overhead; good
scalabilityTotal execution time for the minimum surface minimization

problem using a fixed-sized 250x250 mesh.

Page 19

Complex Applications CCA
Common Component Architecture

37

List of Component Re-Use

• Various services in Ccaffeine
• Integrator

– IntegratorLSODE (2)
– RK2 (2)

• Linear solvers
– LinearSolver_Petra (4)
– LinearSolver_PETSc (4)

• AMR
– AMRmesh (3)

• Data description
– DADFactory (3)

• Data redistribution
– CumulvsMxN (3)

• Visualization
– CumulvsVizProxy (3)

Component interfaces
to parallel data
management and
visualization tools

Component interfaces
to numerical libraries

Complex Applications CCA
Common Component Architecture

38

The Next Level
• Common Interface Specification

– Provides plug-and-play interchangeability
– Requires domain specific experts
– Typically a difficult, time-consuming task
– A success story: MPI

• A case study… the TSTT/CCA mesh interface
– TSTT = Terascale Simulation Tools and

Technologies (www.tstt-scidac.org)
– A DOE SciDAC ISIC focusing on meshes

and discretization
– Goal is to enable

• hybrid solution strategies
• high order discretization
• Adaptive techniques

Geometry
Information
(Level A)

Full
Geometry
Meshes
(Level B)

Mesh
Compone
nts
(Level C)

Page 20

Complex Applications CCA
Common Component Architecture

39

Current Situation
Current Situation
• Public interfaces for numerical libraries are unique
• Many-to-Many couplings require Many2 interfaces

• Often a heroic effort to understand the inner workings of both
codes

• Not a scalable solution

Dist. Array

Overture

PAOMD

SUMAA3d

PETSc

ISIS++

Trilinos

Complex Applications CCA
Common Component Architecture

40

Common Interface Specification
Reduces the Many-to-Many problem to a Many-to-One problem

– Allows interchangeability and experimentation
– Challenges

• Interface agreement
• Functionality limitations
• Maintaining performance

Dist. Array

Overture

PAOMD

SUMAA3d

ISIS++

PETSc

Trilinos

T
S
T
T

E
S
I

Page 21

Complex Applications CCA
Common Component Architecture

41

TSTT Philosophy

• Create a small set of interfaces that existing
packages can support
– AOMD, CUBIT, Overture, GrACE, …
– Enable both interchangeability and interoperability

• Balance performance and flexibility
• Work with a large tool provider and application

community to ensure applicability
– Tool providers: TSTT and CCA SciDAC centers
– Application community: SciDAC and other DOE

applications

Complex Applications CCA
Common Component Architecture

42

Basic Interface
• Enumerated types

– Entity Type: VERTEX, EDGE, FACE, REGION
– Entity Topology: POINT, LINE, POLYGON, TRIANGLE,

QUADRILATERAL, POLYHEDRON, TETRAHEDRON,
HEXAHEDRON, PRISM, PYRAMID, SEPTAHEDRON

• Opaque Types
– Mesh, Entity, Workset, Tag

• Required interfaces
– Entity queries (geometry, adjacencies), Entity iterators,

Array-based query, Workset iterators, Mesh/Entity Tags,
Mesh Services

Page 22

Complex Applications CCA
Common Component Architecture

43

Issues that have arisen
• Nomenclature is harder than we first thought
• Cannot achieve the 100 percent solution, so...

– What level of functionality should be supported?
• Minimal interfaces only?
• Interfaces for convenience and performance?

– What about support of existing packages?
• Are there atomic operations that all support?
• What additional functionalities from existing packages should be

required?
– What about additional functionalities such as locking?

• Language interoperability is a problem
– Most TSTT tools are in C++, most target applications are in

Fortran
– How can we avoid the “least common denominator” solution?
– Exploring the SIDL/Babel language interoperability tool

Complex Applications CCA
Common Component Architecture

44

Summary
• Complex applications that use components are possible

– Shock hydrodynamics
– Chemistry applications
– Optimization problems

• Component reuse is significant
– Adaptive Meshes
– Linear Solvers (PETSc, Trilinos)
– Distributed Arrays and MxN Redistribution
– Time Integrators
– Visualization

• Examples shown here leverage and extend parallel software and
interfaces developed at different institutions

– Including CUMULVS, ESI, GrACE, LSODE, MPICH, PAWS, PETSc, PVM, TAO,
Trilinos, TSTT.

• Performance is not significantly affected by component use
• Definition of domain-specific common interfaces is key

Page 23

Complex Applications CCA
Common Component Architecture

45

Componentizing your own application

• The key step: think about the decomposition strategy
– By physics module?
– Along numerical solver functionality?
– Are there tools that already exist for certain pieces? (solvers,

integrators, meshes?)
– Are there common interfaces that already exist for certain

pieces?
– Be mindful of the level of granularity

• Decouple the application into pieces
– Can be a painful, time-consuming process

• Incorporate CCA-compliance
• Compose your new component application
• Enjoy!

Complex Applications CCA
Common Component Architecture

46

Next: Status and Plans

1

CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

CCA Status and Plans

CCA Status and PlansCCA
Common Component Architecture

2

CCTTSS Research Thrust Areas
and Main Working Groups

• Scientific Components
– Scientific Data Objects
Lois Curfman McInnes, ANL (curfman@mcs.anl.gov)

• “MxN” Parallel Data Redistribution
Jim Kohl, ORNL (kohlja@ornl.gov)

• Frameworks
– Language Interoperability / Babel / SIDL
– Component Deployment / Repository
Scott Kohn, LLNL (skohn@llnl.gov)

• User Outreach
David Bernholdt, ORNL (bernholdtde@ornl.gov)

2

CCA Status and PlansCCA
Common Component Architecture

3

Scientific Components

• Abstract Interfaces and Component
Implementations
– Mesh management
– Linear, nonlinear, and optimization solvers
– Multi-threading and load redistribution
– Visualization and computational steering

• Quality of Service Research
• Fault Tolerance

– Components and Frameworks

CCA Status and PlansCCA
Common Component Architecture

4

Scientific Components
Extended R&D Agenda

• Complete development of abstract interfaces and base
component prototypes

• Advanced component development
– Second-level component extensions
– Application-specific components for chemistry and climate

• Implement fault tolerance and recovery mechanisms
• Develop quality of service models for numerical components

– Integrate QoS system into repository

• Develop interfaces and implementations for multi-level
nonlinear solvers and hybrid mesh management schemes
– Collaboration with TOPS and TSTT centers

3

CCA Status and PlansCCA
Common Component Architecture

5

Scientific Data Objects
& Interfaces

• Define “Standard” Interfaces for HPC Scientific Data
– Descriptive, Not (Necessarily) Generative…

• Basic Scientific Data Object
– David Bernholdt, ORNL

• Structured & Unstructured Mesh
– Lori Freitag, ANL
– Collaboration with SciDAC TSTT Center

• Structured Block AMR
– Phil Colella, LBNL
– Collaboration with APDEC & TSTT

CCA Status and PlansCCA
Common Component Architecture

6

Scientific Data Interfaces

• Low Level, Raw Data
– Supports high performance access to memory
– Based on IOVec

• Assumes a contiguous memory block
• Supports basic data types such as integer, float, double
• No topology information

• Local & Distributed Arrays
– Abstract interfaces for higher-level data

description
• 1D, 2D, 3D dense arrays
• Various distribution strategies

– HPF-like decomposition types (Block/Cyclic…)

4

CCA Status and PlansCCA
Common Component Architecture

7

Mesh Interfaces

• Unstructured Meshes
– Abstract interfaces for mesh and geometry access

and modification
• Supports geometry and topology access via iterators,

arrays, worksets
• Separates structured and unstructured mesh access for

performance

• Block Structured AMR
– Abstract interfaces for allowing block structured

AMR packages to exchange data

CCA Status and PlansCCA
Common Component Architecture

8

“MxN” Parallel Data Redistribution:
The Problem…

“M”

“N”

5

CCA Status and PlansCCA
Common Component Architecture

9

“MxN” Parallel Data Redistribution:
The Problem…

• Create complex scientific simulations by coupling
together multiple parallel component models
– Share data on “M” processors with data on “N”

• M != N ~ Distinct, Pronounced “M by N”…
– Model coupling, e.g., climate, solver / optimizer
– Collecting data for visualization (“Mx1”)

• Define “standard” interface
– Fundamental operations for any parallel data coupler

• Full range of synchronization and communication options

CCA Status and PlansCCA
Common Component Architecture

10

Hierarchical MxN Approach

• Basic MxN Parallel Data Exchange
– Component implementation
– Initial prototypes based on CUMULVS & PAWS

• Interface generalizes features of both

• Higher-Level Coupling Functions
– Units, time & grid Interpolation, flux conservation

• “Automatic” MxN Service via Framework
– Implicit in method invocations, “parallel RMI”

http://www.csm.ornl.gov/cca/mxn/

6

CCA Status and PlansCCA
Common Component Architecture

11

CCA Frameworks

• Component Containers & Run-Time Environments
• Research Areas:

– Integration of prototype frameworks
• SCMD/parallel with distributed
• Unify framework services & interactions…

– Language interoperability tools
• Babel/SIDL, incorporate difficult languages (F90…)
• Production-scale requirement for application areas

– Component deployment
• Component repository, interface lookup & semantics

CCA Status and PlansCCA
Common Component Architecture

12

CCA Framework Prototypes
• Ccaffeine

– SPMD/SCMD parallel
– Direct connection

• CCAT / XCAT
– Distributed
– Network connection

• SCIRun
– Parallel, multithreaded
– Direct connection

• Decaf
– Language interoperability via Babel

7

CCA Status and PlansCCA
Common Component Architecture

13

Outreach and Applications Integration

• Not Just “Thrown Over The Fence”…
• Several Outreach Efforts:

– General education and awareness
• Tutorials, like this one!
• Papers, conference presentations

– Strong liaison with adopting groups
• Beyond superficial exchanges
• Real production requirements & feedback

– Chemistry and cimate work within CCTTSS
• Actual application development work ($$$)

• SciDAC Emphasis
– More vital applied advanced computing research!

CCA Status and PlansCCA
Common Component Architecture

14

Current CCA / CCTTSS Status

• CCA Specification at Version 0.5
• Several Working Prototype Frameworks
• Functional Multi-Component Parallel and Distributed

Demonstration Applications
• Draft specifications for

– Basic scientific data objects
– MxN parallel data redistribution

• Demonstration Software Available for Download
– 4 different “direct connect” applications, 1 distributed
– 31 distinct components, up to 17 in any single application, 6

used in more than one application

8

CCA Status and PlansCCA
Common Component Architecture

15

CCA Tutorial Summary

• Go Forth and Componentize…
– And ye shall bear good scientific software

• Come Together for Domain Standards
– Attain true interoperability & code re-use

• Use The Force:
– http://www.cca-forum.org/tutorials/
– http://www.cca-forum.org/software.html
– tutorial-wg@cca-forum.org
– cca-forum@cca-forum.org

	Microsoft PowerPoint - welcome.ppt
	page 2
	page 3
	page 4

	Microsoft PowerPoint - tutorial-movie.ppt
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11

	Microsoft PowerPoint - tutorial-intro.ppt
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14

	Microsoft PowerPoint - concepts.ppt
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13

	Microsoft PowerPoint - Simple_component.ppt
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11

	Microsoft PowerPoint - CCATutModBabel.ppt
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20

	Microsoft PowerPoint - WritingComponents.ppt
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17

	Microsoft PowerPoint - tutorialModFramework.ppt
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

	Microsoft PowerPoint - scripts.ppt
	page 2
	page 3
	page 4

	Microsoft PowerPoint - tutorial-aps-sc2002.ppt
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23

	Microsoft PowerPoint - CCA.Status.and.Plans.Short.ppt
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

