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Who, What, Where?
• The Global Array Toolkit
• Developed at PNNL beginning in 1993
• Primary developer Jarek Nieplocha
• http://www.emsl.pnl.gov:2080/docs/global/
• Currently built on top of Aggregate Remote Memory 

Copy Interface (ARMCI), by PNNL and Syracuse U
– http://www.emsl.pnl.gov:2080/docs/parsoft/armci/

• GA, ARMCI, associated tools freely distributed (open 
source)
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Why?
• Motivated by needs of quantum chemistry 

applications; designed for generality

• Shared memory approach not portable to distributed 
memory platforms

• Message passing portable across distributed and 
shared memory, but widely viewed as harder to 
program
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Global Arrays
• Basic data structure: two-

dimensional arrays
– Latest version (3.0) generalized to up to 

seven dimensions

• Blockwise distribution across 
processors
– 0 or 1 blocks per processor
– No block-cyclic, often used in linear algebra 

packages
– User may completely specify distribution if 

desired

• Blocks may be uniform or irregular 
in size (as cartesian product of 
distribution in each dimension)
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Skeleton GA Program
Call MPI_Init(..) ! Initialize MPI
Call GA_Initialize() ! Initialize GA
Status = MA_Init(..) ! Initialize memory allocator

… do work ...

Call GA_Terminate() ! Shut down GA
Call MPI_Finalize() ! Shut down MPI
Stop ! End program

• GA does not preclude use of message passing

• GA provides wrappers for message passing global 
communications routines



14 March 2001 CCA Data Objects Group 6

Creating and Destroying GAs
Logical function GA_Create(Type, 

Dim1, Dim2, Name, Block1, 
Block2, g_A)

Logical function 
GA_Create_Irreg(Type, Dim1, 
Dim2, Name, Map1, NBlock1, 
Map2, NBlock2, g_A)

Subroutine GA_Destroy(g_A)

Type Data type (integer, double, 
etc.)

Dim* Array dimensions

Name Array name for debugging

Block* Min. block size per 
processor

Map* Specific designation of 
blocks

Nblock* Number of blocks in map

g_A Global array “handle”
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Basic (Remote) 
Data Access

• Remote blockwise 
write/read
– ga_put
– ga_get

• Remote atomic update
– ga_acc
– ga_read_inc

• Remote elementwise 
write/read
– ga_scatter
– ga_gather

Global Array
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Basic Data Access
• Usage model: get local copy, compute, put in global

• General templates for these functions
– Subroutine GA_Put(g_A, ilo, ihi, jlo, jhi, buf, ld)
– Subroutine GA_Scatter(g_A, v, iarray, jarray, n)

– ilo, ihi, jlo, jhi define patch of matrix
– buf is local memory buffer, with leading dimension ld

– v is array (length n) of values to scatter/gather
– iarray, jarray are indices for elements of v

• Function may return to local caller before remote 
operations are complete!

• Atomic operations reduce communications as well as 
providing atomic functionality
– ga_acc, ga_read_inc both equiv. to ga_get + add + ga_put
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GA Programming Model Concepts
• Modern computers have non-uniform memory access times 

(NUMA): registers, cache, local memory, remote memory, virtual 
memory, disk, …

• GA model exposes NUMA nature to programmer (ga_get,
ga_put, etc) but otherwise appears to be globally shared 
memory

• “Traditional” shared memory models try to hide any local/remote 
non-uniformity in hardware or operating system (c.f. distributed 
shared memory systems) 

• In order to produce scalable, portable, and efficient parallel 
algorithms, programmer must take into account NUMA nature of 
system
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Interprocessor Synchronization
• Mutual exclusion lock: protect critical sections 

(common in shrared memory model)
– GA_Create_Mutexes(n), GA_Destroy_Mutexes
– GA_Lock(I), GA_Unlock(I)

• Fence: insure all GA-related data transfers initiated 
by this process have completed (local operation)
– GA_Init_Fence, GA_Fence

• Synchronization barrier (collective operation)
– GA_Sync
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Collective Array Operations

• Must be called by all processes -- conceptual 
(perhaps actual) ga_sync calls at beginning and end

• Operate on whole arrays or patches

• Basic array operations
– GA_Zero, GA_Fill, GA_Scale, GA_Copy

• Linear algebra operations
– GA_Add, GA_DGEMM, GA_Ddot, GA_Symmetrize, GA_Transpose

• Interfaces to third-party software packages
– SCALAPACK (UTK): GA_Solve, GA_Llt_Solve, GA_LU_Solve, 

GA_SPD_Invert
– PeIGS (PNNL): GA_Diag, GA_Diag_Reuse, GA_Diag_Std
– PETSC (ANL), CUMULVS (ORNL)
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Building Data Parallel Functions

GA_Locate(g_A, I, j, owner)
GA_Locate_Region(g_A, ilo, ihi, jlo, jhi, 

map, np)

GA_Distribute(g_A, iproc, ilo, ihi, jlo, jhi)

GA_Access(g_A, ilo, ihi, jlo, jhi, 
local_pointer, ld)

GA_Release(g_A, ilo, ihi, jlo, jhi)
GA_Release_Update(g_A, ilo, ihi, jlo, jhi)

GA_Compare_Distr(g_A, g_B)

• Use GA_Distribute to find 
out which part of the GA this 
process owns

• Use GA_Access to get a 
pointer directly to the local 
part of the GA

• Operate on the data 
(read/write)

• Release the data (use 
GA_Release_Update if data 
has been modified)
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Under the Hood: ARMCI
• Most array sections involve many distinct blocks of 

contiguous data, not just one
• Moving such sections around an MPP involves many 

messages, often small ones 
• Gain performance by aggregating data before putting 

it on the wire – fewer messages, larger size
• Compact notations to express sections

– Generalized IOVec – optimization of Craig’s RawData port
– Multi-strided array sections – specific to multidimensional 

rectangular arrays


