
14 March 2001 CCA Data Objects Group 1

The Global Array 
Parallel Programming 

Model

David E. Bernholdt

Oak Ridge National Laboratory

bernholdtde@ornl.gov
http://www.csm.ornl.gov/~bernhold



14 March 2001 CCA Data Objects Group 2

Who, What, Where?
• The Global Array Toolkit
• Developed at PNNL beginning in 1993
• Primary developer Jarek Nieplocha
• http://www.emsl.pnl.gov:2080/docs/global/
• Currently built on top of Aggregate Remote Memory 

Copy Interface (ARMCI), by PNNL and Syracuse U
– http://www.emsl.pnl.gov:2080/docs/parsoft/armci/

• GA, ARMCI, associated tools freely distributed (open 
source)



14 March 2001 CCA Data Objects Group 3

Why?
• Motivated by needs of quantum chemistry 

applications; designed for generality

• Shared memory approach not portable to distributed 
memory platforms

• Message passing portable across distributed and 
shared memory, but widely viewed as harder to 
program



14 March 2001 CCA Data Objects Group 4

Global Arrays
• Basic data structure: two-

dimensional arrays
– Latest version (3.0) generalized to up to 

seven dimensions

• Blockwise distribution across 
processors
– 0 or 1 blocks per processor
– No block-cyclic, often used in linear algebra 

packages
– User may completely specify distribution if 

desired

• Blocks may be uniform or irregular 
in size (as cartesian product of 
distribution in each dimension)

P0 P3 P6

P1 P4 P7

P2 P5 P8

P0 P3 P6

P1 P4 P7

P2 P5 P8



14 March 2001 CCA Data Objects Group 5

Skeleton GA Program
Call MPI_Init(..) ! Initialize MPI
Call GA_Initialize() ! Initialize GA
Status = MA_Init(..) ! Initialize memory allocator

… do work ...

Call GA_Terminate() ! Shut down GA
Call MPI_Finalize() ! Shut down MPI
Stop ! End program

• GA does not preclude use of message passing

• GA provides wrappers for message passing global 
communications routines



14 March 2001 CCA Data Objects Group 6

Creating and Destroying GAs
Logical function GA_Create(Type, 

Dim1, Dim2, Name, Block1, 
Block2, g_A)

Logical function 
GA_Create_Irreg(Type, Dim1, 
Dim2, Name, Map1, NBlock1, 
Map2, NBlock2, g_A)

Subroutine GA_Destroy(g_A)

Type Data type (integer, double, 
etc.)

Dim* Array dimensions

Name Array name for debugging

Block* Min. block size per 
processor

Map* Specific designation of 
blocks

Nblock* Number of blocks in map

g_A Global array “handle”



14 March 2001 CCA Data Objects Group 7

Basic (Remote) 
Data Access

• Remote blockwise 
write/read
– ga_put
– ga_get

• Remote atomic update
– ga_acc
– ga_read_inc

• Remote elementwise 
write/read
– ga_scatter
– ga_gather

Global Array

P0 P3 P6

P1 P4 P7

P2 P5 P8

Local Memory

Pa Pb



14 March 2001 CCA Data Objects Group 8

Basic Data Access
• Usage model: get local copy, compute, put in global

• General templates for these functions
– Subroutine GA_Put(g_A, ilo, ihi, jlo, jhi, buf, ld)
– Subroutine GA_Scatter(g_A, v, iarray, jarray, n)

– ilo, ihi, jlo, jhi define patch of matrix
– buf is local memory buffer, with leading dimension ld

– v is array (length n) of values to scatter/gather
– iarray, jarray are indices for elements of v

• Function may return to local caller before remote 
operations are complete!

• Atomic operations reduce communications as well as 
providing atomic functionality
– ga_acc, ga_read_inc both equiv. to ga_get + add + ga_put



14 March 2001 CCA Data Objects Group 9

GA Programming Model Concepts
• Modern computers have non-uniform memory access times 

(NUMA): registers, cache, local memory, remote memory, virtual 
memory, disk, …

• GA model exposes NUMA nature to programmer (ga_get,
ga_put, etc) but otherwise appears to be globally shared 
memory

• “Traditional” shared memory models try to hide any local/remote 
non-uniformity in hardware or operating system (c.f. distributed 
shared memory systems) 

• In order to produce scalable, portable, and efficient parallel 
algorithms, programmer must take into account NUMA nature of 
system



14 March 2001 CCA Data Objects Group 10

Interprocessor Synchronization
• Mutual exclusion lock: protect critical sections 

(common in shrared memory model)
– GA_Create_Mutexes(n), GA_Destroy_Mutexes
– GA_Lock(I), GA_Unlock(I)

• Fence: insure all GA-related data transfers initiated 
by this process have completed (local operation)
– GA_Init_Fence, GA_Fence

• Synchronization barrier (collective operation)
– GA_Sync



14 March 2001 CCA Data Objects Group 11

Collective Array Operations

• Must be called by all processes -- conceptual 
(perhaps actual) ga_sync calls at beginning and end

• Operate on whole arrays or patches

• Basic array operations
– GA_Zero, GA_Fill, GA_Scale, GA_Copy

• Linear algebra operations
– GA_Add, GA_DGEMM, GA_Ddot, GA_Symmetrize, GA_Transpose

• Interfaces to third-party software packages
– SCALAPACK (UTK): GA_Solve, GA_Llt_Solve, GA_LU_Solve, 

GA_SPD_Invert
– PeIGS (PNNL): GA_Diag, GA_Diag_Reuse, GA_Diag_Std
– PETSC (ANL), CUMULVS (ORNL)



14 March 2001 CCA Data Objects Group 12

Building Data Parallel Functions

GA_Locate(g_A, I, j, owner)
GA_Locate_Region(g_A, ilo, ihi, jlo, jhi, 

map, np)

GA_Distribute(g_A, iproc, ilo, ihi, jlo, jhi)

GA_Access(g_A, ilo, ihi, jlo, jhi, 
local_pointer, ld)

GA_Release(g_A, ilo, ihi, jlo, jhi)
GA_Release_Update(g_A, ilo, ihi, jlo, jhi)

GA_Compare_Distr(g_A, g_B)

• Use GA_Distribute to find 
out which part of the GA this 
process owns

• Use GA_Access to get a 
pointer directly to the local 
part of the GA

• Operate on the data 
(read/write)

• Release the data (use 
GA_Release_Update if data 
has been modified)



14 March 2001 CCA Data Objects Group 13

Under the Hood: ARMCI
• Most array sections involve many distinct blocks of 

contiguous data, not just one
• Moving such sections around an MPP involves many 

messages, often small ones 
• Gain performance by aggregating data before putting 

it on the wire – fewer messages, larger size
• Compact notations to express sections

– Generalized IOVec – optimization of Craig’s RawData port
– Multi-strided array sections – specific to multidimensional 

rectangular arrays


