
1

Component-Based Software
Development for High Performance

Computing

David E. Bernholdt
ORNL and the Center for Component

Technology in Terascale Simulation Software

bernholdtde@ornl.gov
http://www.csm.ornl.gov/~bernhold/

2

What are Components?

• Units of computational functionality, large
enough to do something useful, but not large
enough to do everything, with a well-defined
interface to the outside world

• In an OO sense, a collection of objects that
can stand alone

• Size of a component can vary greatly
depending on context, effort invested, etc.

3

Examples of Components

Context: NWChem parallel
computational chemistry code

• Coupled Cluster
• Density Functional Theory
• Hartree-Fock
• Integral evaluation
• Basis set
• Geometry optimizer
• Global Arrays
• …

Context: Newly-created
componentized Hartree-Fock
code

• Fock matrix builder
• Eigensolver
• Density matrix builder
• Property analyzer (density)
• Integral evaluation
• Basis set
• Geometry optimzer
• Global Arrays
• …

4

Why Use Components?

• Components improve software interoperability and
re-use

• Components serve as building blocks to simplify
software construction

• Components make it easier for developers to focus
on creation of software in their area of expertise – a
rich repository of components gives access to many
experts

• Elsewhere in the computer industry, component
technology is in wide use and is revolutionizing
software development
− CORBA, COM/DCOM, EJB, etc.

5

Components for High Performance?

• Commodity component environments are not suited
to high performance computing
− No concept of parallel computing (designed mainly for

uniprocessor distributed computing)
− Heavyweight – significant performance penalties even when

components are running on same machine
• The Common Component Architecture is intended

to provide a component model suitable for high-
performance simulation applications
− Preserve HPC performance
− Bring benefits of component-based software development to

HPC

6

The Common Component
Architecture

• Supports parallel and
distributed computing

• Minimalist standard
• Meant to work with

commodity component
models

• Currently have draft
specifications (incomplete)
and early prototypes

• Running parallel reaction-
diffusion+visualization
demonstration (SC00)

P0 P1 P2 P3

• Components: Blue, Yellow, Red
• Framework: Green

• Different components on same processor talk to
each other via framework

• Same component on different processors talk to
each other through their favorite communications
layer (i.e. MPI, PVM, GA)

7

Component Interfaces

• Ports are interface definitions. Component writers
code to port specifications

• Components either provide or use ports. If you
provide a port, that means you implement it

• In current parallel framework (CCAFFEINE)
components are loaded into the same address space
(“direct connect” model)

• “Getting” a port means getting a pointer to the
function lookup table for the component providing the
port

• Calls between components are equivalent to a C++
virtual function call (low overhead)

8

CCA Participants and Status
• Primary developers at the moment come from

− ANL, Indiana U, LANL, LLNL, ORNL, PNNL, SNL, U Utah
• Through informal activity over the last three years,

we’ve developed (incomplete) draft specifications and
prototype implementations

• CCA Forum is standards body, meeting quarterly,
mailing list

• Center for Component Technology for Terascale
Simuation Software (CCTTSS) is new SciDAC
Enabling Technology Center

• CCA Forum & CCTTSS develop/standardize CCA
itself (framework, essential services, etc.). Hopefully
domains will organize their own “standards bodies”
for CCA-compliant interfaces

9

CCTTSS Plans

• Unify parallel and distributed frameworks
• Flesh out framework specification (esp. framework services)
• Language interoperability (incl F77, F90)
• Develop a “suite” of components to bootstrap adopters

(numerical, data objects, parallel programming models, etc.)
• MxN data redistribution (coupling of parallel components)
• More than 20 projects/proposals plan to use CCA
• CCA proposal will include applications integration work in

computational chemistry and climate (technology “push”)
• Work with other projects wishing to adopt (technology “pull”)

10

FrameworkGUI ComponentBuilder Service

Thread Satefy

Utah

Steve Parker

ChemistryData ComponentsSCMD FrameworkSNL

Rob Armstrong
(Lead PI)

ChemistryData ComponentsPNNL

Jarek Nieplocha

Climate

Liaison

ComponentFault Tolerance

Visualization and
Steering

ORNL

David Bernholdt, Jim
Kohl

FrameworkLanguage
Interoperability

Component
Repository

LLNL

Scott Kohn

ComponentLANL

Craig Rasmussen

Linear SolversDistributed
Framework

Indiana

Dennis Gannon

ClimateData Components

Optimization

Nonlinear Solvers

Low-level servicesANL

Lois Curfman
McInnes

ApplicationsMxNParallel
Components

FrameworksInstitution

11

CCTTSS Chemistry “Push”

• Participants: (ORNL), PNNL, SNL + Ames, ANL
• Focus codes: NWChem (PNNL), MPQC (SNL),

GAMESS (Ames), POLYRATE/DIRDY (U Minn), TAO
(ANL)

• Planned activities:
− High-level interfaces between electronic structure methods

in NWChem, MPQC & optimization methods in TAO
− Automated protein/ligand binding studies (above + MM/MD,

new drivers)
− Automated PES discovery/mapping tools (collab. with ANL-

lead SciDAC Chemistry project; NWChem, MPQC,
GAMESS, POLYRATE/DIRDY, new drivers)

− Lower-level interoperability between electronic structure
packages (i.e. property evaluation and/or solvent models in
NWChem, MPQC, and GAMESS)

12

Learning More, Becoming
Compliant, Getting Involved

• www.cca-forum.org, cca-forum@z.ca.sandia.gov,
quarterly meetings (next: 14-15 June, Yountsville, CA)

• I am “Applications Integration” Lead for CCTTSS
• Plan now for CCA-compliance (not a burden)
• Study and comment on proposals that directly relate to

your interests
− “CCA Data” working group is currently designing common

interfaces for basic scientific data objects, i.e. local arrays,
distributed arrays, data distributions, unstructured meshes

− Meant to encompass existing and new packages
• Form a group to develop CCA-compliant “standard”

interfaces for the materials community

