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What are Components?

• Units of computational functionality, large 
enough to do something useful, but not large 
enough to do everything,  with a well-defined 
interface to the outside world

• In an OO sense, a collection of objects that 
can stand alone

• Size of a component can vary greatly 
depending on context, effort invested, etc.
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Examples of Components

Context: NWChem parallel 
computational chemistry code

• Coupled Cluster
• Density Functional Theory
• Hartree-Fock
• Integral evaluation
• Basis set
• Geometry optimizer
• Global Arrays
• …

Context: Newly-created 
componentized Hartree-Fock 
code

• Fock matrix builder
• Eigensolver
• Density matrix builder
• Property analyzer (density)
• Integral evaluation
• Basis set
• Geometry optimzer
• Global Arrays
• …
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Why Use Components?

• Components improve software interoperability and 
re-use

• Components serve as building blocks to simplify 
software construction

• Components make it easier for developers to focus 
on creation of software in their area of expertise – a 
rich repository of components gives access to many 
experts

• Elsewhere in the computer industry, component 
technology is in wide use and is revolutionizing 
software development
− CORBA, COM/DCOM, EJB, etc.
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Components for High Performance?

• Commodity component environments are not suited 
to high performance computing
− No concept of parallel computing (designed mainly for 

uniprocessor distributed computing)
− Heavyweight – significant performance penalties even when 

components are running on same machine
• The Common Component Architecture is intended 

to provide a component model suitable for high-
performance simulation applications
− Preserve HPC performance
− Bring benefits of component-based software development to 

HPC
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The Common Component 
Architecture

• Supports parallel and 
distributed computing

• Minimalist standard
• Meant to work with 

commodity component 
models

• Currently have draft 
specifications (incomplete) 
and early prototypes

• Running parallel reaction-
diffusion+visualization 
demonstration (SC00)

P0 P1 P2 P3

• Components: Blue, Yellow, Red
• Framework: Green

• Different components on same processor talk to 
each other via framework

• Same component on different processors talk to 
each other through their favorite communications 
layer (i.e. MPI, PVM, GA) 
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Component Interfaces

• Ports are interface definitions. Component writers 
code to port specifications

• Components either provide or use ports.  If you 
provide a port, that means you implement it

• In current parallel framework (CCAFFEINE) 
components are loaded into the same address space 
(“direct connect” model)

• “Getting” a port means getting a pointer to the 
function lookup table for the component providing the 
port

• Calls between components are equivalent to a C++ 
virtual function call (low overhead)
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CCA Participants and Status
• Primary developers at the moment come from

− ANL, Indiana U, LANL, LLNL, ORNL, PNNL, SNL, U Utah
• Through informal activity over the last three years, 

we’ve developed (incomplete) draft specifications and 
prototype implementations

• CCA Forum is standards body, meeting quarterly, 
mailing list

• Center for Component Technology for Terascale 
Simuation Software (CCTTSS) is new SciDAC 
Enabling Technology Center

• CCA Forum & CCTTSS develop/standardize CCA 
itself (framework, essential services, etc.).  Hopefully 
domains will organize their own “standards bodies” 
for CCA-compliant interfaces
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CCTTSS Plans

• Unify parallel and distributed frameworks
• Flesh out framework specification (esp. framework services)
• Language interoperability (incl F77, F90)
• Develop a “suite” of components to bootstrap adopters 

(numerical, data objects, parallel programming models, etc.)
• MxN data redistribution (coupling of parallel components)
• More than 20 projects/proposals plan to use CCA
• CCA proposal will include applications integration work in 

computational chemistry and climate (technology “push”)
• Work with other projects wishing to adopt (technology “pull”)
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CCTTSS Chemistry “Push”

• Participants: (ORNL), PNNL, SNL + Ames, ANL
• Focus codes: NWChem (PNNL), MPQC (SNL), 

GAMESS (Ames), POLYRATE/DIRDY (U Minn), TAO 
(ANL)

• Planned activities:
− High-level interfaces between electronic structure methods 

in NWChem, MPQC & optimization methods in TAO
− Automated protein/ligand binding studies (above + MM/MD, 

new drivers)
− Automated PES discovery/mapping tools (collab. with ANL-

lead SciDAC Chemistry project; NWChem, MPQC, 
GAMESS, POLYRATE/DIRDY, new drivers)

− Lower-level interoperability between electronic structure 
packages (i.e. property evaluation and/or solvent models in 
NWChem, MPQC, and GAMESS)
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Learning More, Becoming 
Compliant, Getting Involved

• www.cca-forum.org, cca-forum@z.ca.sandia.gov, 
quarterly meetings (next: 14-15 June, Yountsville, CA)

• I am “Applications Integration” Lead for CCTTSS
• Plan now for CCA-compliance (not a burden)
• Study and comment on proposals that directly relate to 

your interests 
− “CCA Data” working group is currently designing common 

interfaces for basic scientific data objects, i.e. local arrays,
distributed arrays, data distributions, unstructured meshes

− Meant to encompass existing and new packages
• Form a group to develop CCA-compliant “standard” 

interfaces for the materials community


