
117 December 2001 Pacific Northwest National Laboratory

Component-Based Software for
High-Performance Computing:
An Introduction to the Common
Component Architecture

David E. Bernholdt
Computer Science and Mathematics
Division, Oak Ridge National Laboratory
and
Center for Component Technology for
Terascale Simulation Software

2

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Acknowledgements

• Members of the CCTTSS, especially
− Rob Armstrong, SNL
− Lori Frietag, ANL
− Jim Kohl, ORNL
− Lois Curfman McInnes, ANL
− Boyanna Norris, ANL
− Jaideep Ray, SNL

• This work is sponsored by…
− US Dept. of Energy

• Office of Science
− Advanced Scientific Computing Research (ASCR)

• Mathematics, Information and Computer Science (MICS)
− Scientific Discovery through Advanced Computing (SciDAC)

program

3

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Challenges in Modern Scientific
Software Development

• Desire for rapid development cycle
• Diversity of languages and tools

− What can be used together?
− Ability to reuse code from inside or outside organization

• Parallel computing significantly increases algorithmic
complexity
− Where do you find the expertise in all disciplines your code

might require?
− Architectural complexity and diversity of modern MPPs

• Increasing capability of computers leads to new
expectations of simulation
− Higher fidelity, greater sophistication
− Extension to multi-scale and multi-physics simulations
− Coupling of simulations

4

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Managing Software Complexity:
Object-Oriented Programming

• OO design is a well-established, popular, and widely
used methodology
− Often sold as a means for managing software complexity
− Fundamental ideas: Modularity, Abstraction, Encapsulation,

Hierarchy
• OO programming does not require OO languages,

but langauge support can be very helpful
− Support for encapsulation, hierarchy, etc.

• Objects can simplify abstraction and encapsulation,
facilitating reuse
− But deep object hierarchies make reuse harder

• OO languages are still rather immature
− Reliance on OO language features can make language

interoperability hard

5

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Component-Based Programming
• Based on OO ideas, but at a coarser level
• Components encapsulate well-defined units of reusable

functionality (in OO sense, often a collection of objects)
• They interact through well-defined interfaces

− Separates interface from its implementation: “Good fences make
good neighbors”

• Components improve modularity and reuse
− Provides for “plug and play” HPC code.
− Facilitates exchange of components between groups
− Facilitates interdisciplinary collaboration in a single app.
− Allows you to focus on your area of interest/expertise

• Intended to make it easier to compose software into a
working application

• Not a magic bullet
− Does not alter algorithms: does not speed up their development, or

eliminate bugs. Does not make programming easier

6

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

21st Century Application

Discretization

Algebraic Solvers

Parallel I/O

Grids

Data Reduction

Physics Modules

Optimization

Derivative Computation

Collaboration

Diagnostics

Steering

Visualization

Adaptive Solution

Picture courtesy of
Lois Curfman McInnes, ANL

7

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Commodity Component Models

• Component models are common in visualization
environments
− AVS, Data Explorer
− dataflow-based

• Component-based software development has taken
the commercial/industrial world by storm.
− CORBA, COM/DCOM, Enterprise JavaBeans

• Unfortunately, these systems are not generally
suitable for high-performance scientific computing
− Focus exclusively on local & distributed computing
− No concept of parallelism
− High overheads, even for local operation
− Often platform or language-specific

8

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

The Common Component
Architecture

• A component model specifically designed for
high-performance computing

• Supports both parallel and distributed
applications

• Designed to be implementable without
sacrificing performance

• Minimalist approach makes it easier to
componentize existing software

9

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

CCA Concepts: Ports

• Components interact through well-defined interfaces,
or ports
− In OO language, a port is a class
− In Fortran languages, a port is a bunch of subroutines

• A given component may provide a port – implement
the class or subroutines

• Another component may use that port – call methods
or subroutines in the port.

• Links denote a caller/callee relationship, not
dataflow!
− e.g., linSolve port might contain: solve(in A, out x, in b)

SolverComponent

linSolveusesSolver

PhysicsComponent

10

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

A More Complex Example

• A component may provide and/or use
multiple ports

• A component may provide some ports and
use others

• A component may provide or use multiple
instances of the same port

computeAx

PhysicsComponent
configModel

SolverComponent1

linSolve needAx

SolverComponent2

linSolve needAx

usesSolver2

DriverComponent
configPhys

usesSolver1

11

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

CCA Concepts: Frameworks

• The framework provides the means to “hold”
components and compose them into applications

• The framework is the application’s “main” or “program”
• Frameworks allow exchange ports among

components without exposing implementation details
• Frameworks may support sequential, distributed, or

parallel execution models, or any combination they
choose

• Frameworks provide a small set of standard services
to components
− BuilderServices allow programs to compose CCA apps

• Frameworks may make themselves appear as
components in order to connect to components in
other frameworks

12

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

What Does This Look Like?
• Launch framework (w/ or w/o GUI)
• Instantiate components required for app.
• Connect appropriate provided and used ports
• Start application (i.e. click Go port)

create TaoSolver TAOSolver
create MinsurfDriver MinsurfDriver
…
connect MinsurfDriver OptModel MinsurfModel OptModel
connect MinsurfDriver OptSolver TAOSolver OptSolver
…

13

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

What Makes a CCA Component?

• All CCA-compliant
components must implement
a setServices() method

• Framework invokes
setServices when component
is instantiated

• Provides component with
CCA Services object – the
external world (as the
framework knows it)

Framework

SolverComponent

CCA Services SC

void SolverComponent::
setServices(gov::cca::
Services *svc){…}

• User instantiates
SolverComponent

• Framework calls SC’s
setServices method with a
CCA Services object – the
component’s window on the
external world

14

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

SC Provides a solverPort
Framework

• Within setServices,
component declares ports it
provides and uses

• addProvidesPort places port in
CCA Services – makes it
visible the framework

• Other components cannot
yet use solverPort!

• setServices completes and
control returns to framework
to instantiate other
components

SolverComponent

CCA Services SC

gov::cca::PortInfo * pInfo;

pInfo = svc->createPortInfo(
“linSolve”,”solverPort”);

err = svc->addProvidesPort(
this, pInfo);

linSolve
solverPort

15

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

PC Wants to Use a solverPort
Framework

• User instantiates
PhysicsComponent

• Framework calls PC’s
setServices

• registerUsesPort informs the
framework that we want to
connect to a component
providing a solverPort

• setServices completes, control
returns to framework

• PC cannot see
SolverComponent or the
solverPort it provides

PhysicsComponent

CCA Services PC

gov::cca::PortInfo * pInfo;

pInfo = svc->createPortInfo(
“usesSolver”,”solverPort”);

err = svc->registerUsesPort(
pInfo);

usesSolver
solverPort

16

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Framework

PhysicsComponent

CCA Services PC

SolverComponent

CCA Services SC

linSolve
solverPort

User Instructs Framework to Connect
solverPort between User and Provider

usesSolver
solverPort

linSolve
solverPort

ccafe> connect PhysicsComponent usesSolver \
SolverComponent linSolve

17

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Framework

PhysicsComponent

CCA Services PC

SolverComponent

CCA Services SC

linSolve
solverPort

gov::cca::Port * pSolver;
pSolver = svc->getPort(

“usesSolver");
SolverPort * solver;
solver =dynamic_cast

<SolverPort *>(pSolver);

PC Gets the Port from its CCA
Services

linSolve
solverPort

usesSolver
solverPort

18

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Framework

PhysicsComponent

CCA Services PC

SolverComponent

CCA Services SC

linSolve
solverPort

solver->solve(A, x, b);
void SolverComponent::

solve(A, x, b) {…}

PC Can Finally Call solve on SC’s
solverPort

linSolve
solverPort

usesSolver
solverPort

19

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Important Features of CCA
Component Model

• Fences between components
− Components must declare both

what they provide and what
they use

− Components cannot interact
until ports are connected

− No mechanism to call anything
not part of a port

• Ports preserve high
performance direct connection
semantics…

• …While also allowing distributed
computing

Component 1 Component 2
Provides/Uses

Port

Direct Connection

Component 1

Component 2
Uses
Port

Provides
Port

Network
Connection

20

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Prototype CCA Frameworks

• CCAT, Indiana University, Dennis Gannon
− Distributed
− Network connection

• CCAFFEINE, Sandia National Laboratories, Rob
Armstrong
− SPMD/SCMD parallel
− Direct connection

• SCIRun/Uintah, University of Utah, Steve Parker
− Parallel, multithreaded
− Direct connection

21

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

CCA Concepts: Direct Connection

• Components loaded into separate namespaces
in same address space (process) from shared
libraries

• getPort call returns a pointer to the port’s function
table

• Invoking a method on a port is equivalent to a
C++ virtual function call: lookup function, invoke

• Maintains performance (lookup can be cached)

22

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

CCA Concepts: SCMD

• Single component multiple
data (SCMD) model is
component analog of widely
used SPMD model

• Each process loaded with the
same set of components
wired the same way

• Different components in same
process “talk to each” other
via ports and the framework

• Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Beige

23

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Current Status of CCA

• Specification version 0.5
• Working prototype frameworks
• Working multi-component parallel and distributed

demonstration applications
• Draft specifications for

− Basic scientific data objects
− MxN parallel data redistribution

• SC01 demonstrations
− four different “direct connect” applications, add’l distributed
− DC demos: 31 distinct components, up to 17 in any single

application, 6 used in more than one application
− Components leverage and extend parallel software tools

including CUMULVS, GrACE, LSODE, MPICH, PAWS,
PETSc, PVM, SUMAA3d, TAO, and Trilinos.

24

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Solution of an unconstrained minimization problem
(determining minimal surface area given boundary constraints)
using the TAOSolver optimization component

TAOSolver uses linear solver components that incorporate abstract interfaces under
development by the Equation Solver Interface (ESI) working group; underlying
implementations are provided via the new ESI interfaces to parallel linear solvers
within the PETSc and Trilinos libraries. These linear solver components are
employed in the other two applications as well.

25

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Solution of a two-dimensional heat equation on a square
domain using an adaptive structured method.

IntegratorLSODE provides a second-order implicit time integrator, and
Model provides a discretization. The remaining components are
essentially utilities that construct the global ODE system or adaptors
that convert the patch-based data structures of the mesh to the globally
distributed array structure used for runtime visualization.

26

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Solution of a time-
dependent PDE using a
finite element
discretization on an
unstructured mesh

IntegratorLSODE provides a second-order implicit time integrator, and FEMDiscretization provides a discretization.

This application (and the other two applications as well) use the DADFactory component to describe the parallel data layout so that the
CumulsMxN data redistribution component can then collate the data from a multi-processor run to a single processor for runtime visualization.

27

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

The CCA Forum

• The Common Component Architecture is merely a
specification for what is required to be a CCA
component and a CCA framework

• Specification determined by the CCA Forum
− Open membership
− Face-to-face meetings quarterly
− Voting privileges based on attendance at recent meetings

• CCA Forum has been meeting regularly since
January 1998
− Next meeting: Bishop’s Lodge, Santa Fe, NM

• 9 January 2002 – working groups & tutorial,
• 10-11 January 2002 – general Forum meeting

28

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

The Center for Component
Technology for Terascale

Simulation Software (CCTTSS)

• A SciDAC Integrated Software Infrastructure Center
(ISIC)

• Mission: Advance research in high-performance
component technology and bring CCA from a
conceptual prototype to a full-fledged production-
quality environment

• Participants:
− Argonne, Livermore, Los Alamos, Oak Ridge, Pacific

Northwest, and Sandia National Laboratories;
− Indiana University, and University of Utah

29

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

CCTTSS’s R&D Agenda
• Frameworks

− Integration of prototype frameworks
− Language interoperability tools
− Component deployment

• Scientific Components
− Abstract interfaces and component implementations
− Scientific data; Linear, nonlinear, and optimization solvers;

Steering and visualization; Multi-threading and load
redistribution; Fault tolerance

− Quality of service research
• MxN Parallel Data Redistribution
• Applications Integration

− Chemistry and Climate work within CCTTSS
− Close collaboration with other SciDAC infrastructure projects

(especially TOPS, TSTT)
− Strong liaison with adopting groups

30

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

CCA Concepts:
MxN Parallel Data Redistribution

• Share Data Among Coupled Parallel Models
− Disparate Parallel Topologies (M processes vs. N)
− e.g. Ocean & Atmosphere, Solver & Optimizer…
− e.g. Visualization (Mx1, increasingly, MxN)

VisualizationVisualizationParallel Model CouplingParallel Model Coupling

31

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

MxN: The Problem
M=4 N=9

32

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

MxN Research Activities

• Distributed data descriptors
− Uniform langauge for expressing distribution
− Draft specification for dense multi-dimensional arrays

• MxN port
− Draft specification completed, implemented
− Minimal intrusion to “instrument” component, third-party

control possible
− Multiple data fields, exchange in either direction
− One-shot or repeated transfer

• Future
− Framework-based solutions
− Higher-level coupling, account for units of data, spatial and

termporal interpolation, etc.

33

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

CCA Concepts: Language
Interoperability

• Existing language interoperability approaches
are “point-to-point” solutions Java JNI

Native
SWIG/SILOON

Platform Dependent
Python Library

C

C++

f77

f90

Python

Java
Arrows indicate direction
of supported function calls

34

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Language Interoperability w/ Babel

• Babel provides a
unified approach in
which all languages
are considered peers

C

C++

f77

f90

Python

Java

Babel

Somewhat similar to the
CORBA approach in the
business domain

version solverPort 1.0;
package solverPort {

class Solver {
int solve(in array<double,2> A,

out array<double,1> x,
in array<double, 1> b);

}
}

solverPort.sidl

35

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Using Babel
Component Writer Component User

Babel

Implementation Source Code

Implementation File Other Files

Babel Libraries

Babel

Header File

SIDL User Source Code

Other Files

Compiler

Linker

SolverComponent

Compiler

Linker

PhysicsComponent

#include…
Developer inserts
source into file

36

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Summary
• Components promote modularity & reuse, allow

developers to focus on their areas of expertise
• CCA is a component model targeted specifically to

the needs of high-performance computing – supports
direct connection of components (as well as
distributed computing)

• Components exchange ports following a uses-
provides design pattern.

• Specification intentionally places minimal
requirements on components
− 1 additional method to become a component
− 2 calls to declare a used or provided port
− 2 calls required to get a port for use

• Useful prototypes exist, applications being developed
• CCTTSS mission to bring CCA from prototype to

production-quality system

37

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Information Pointers
• http://www.cca-forum.org

• http://www.cca-forum.org/ccttss

• Mailing list: cca-forum@z.ca.sandia.gov (majordomo)

• CCTTSS contacts:

j_nieplocha@pnl.govPNNLJarek NieplochaPNNL PI

bernholdtde@ornl.govORNLDavid BernholdtApplications Integration

kohlja@ornl.govORNLJim KohlMxN Data Redistribution

mcinnes@anl.govANLLois McInnesScientific Data Components
skohn@llnl.govLLNLScott KohnFrameworks
rob@sandia.govSNLRob ArmstrongLead PI

38

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

The End

39

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Creating a Component Using Babel
babel -sF77 solverPort.sidl -olib
Arguments:
1. Language of “server” (implementation)
2. Input SIDL file
3. Output directory

subroutine solverPort_Solver__ctor_impl(self)
implicit none
integer*8 self
subroutine solverPort_Solver__dtor_impl(self)
implicit none
integer*8 self
subroutine solverPort_Solver_solve_impl(self, A, x, b, retval)
implicit none
integer*8 self, A, x, b
integer*4 retval

solverPort_Solver_Impl.f

Class Constructor

Class Destructor

Solve Implementation

babel.make
makefile
SIDL_BaseClass_fStub.c
SIDL_BaseException_fStub.c
SIDL_BaseInterface_fStub.c
SIDL_DLL_fStub.c
SIDL_Loader_fStub.c
solverPort_IOR.h
solverPort_Solver_fSkel.c
solverPort_Solver_fStub.c
solverPort_Solver_Impl.f
solverPort_Solver_IOR.c
solverPort_Solver_IOR.h

40

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

Using a Babel-Created Component

babel -cC solverPort.sidl
Arguments:
1. Language of “client” (user)
2. Input SIDL file

babel.make
solverPort.h
solverPort_IOR.h
solverPort_Solver.h
solverPort_Solver_IOR.c
solverPort_Solver_IOR.h
solverPort_Solver_Stub.c

#include “solverPort.h”
…
solverPort_Solver_solve(A, x,b);
…

usesSolver.c

subroutine solverPort_Solver_solve_impl(self, A, x, b, retval)
solverPort_Solver_Impl.f

Babel

41

Oak Ridge National Laboratory

Pacific Northwest National Laboratory17 December 2001

FrameworkGUI ComponentBuilder Service

Thread Satefy

Utah

Steve Parker

ChemistryData ComponentsSCMD FrameworkSNL

Rob Armstrong (Lead PI)

ChemistryData ComponentsPNNL

Jarek Nieplocha

Climate

Liaison

ComponentFault Tolerance

Visualization and
Steering

ORNL

David Bernholdt, Jim Kohl

FrameworkLanguage
Interoperability

Component
Repository

LLNL

Scott Kohn

ComponentLANL

Craig Rasmussen

Linear SolversDistributed
Framework

Indiana

Dennis Gannon

ClimateData Components

Optimization

Nonlinear Solvers

Low-level servicesANL

Lois Curfman McInnes

Applications

David Bernholdt, ORNL

MxN

Jim Kohl, ORNL

Parallel
Components

Lois McInnes, ANL

Frameworks

Scott Kohn, LLNL

Institution

