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Performance Considerations

• Calls between components
− Framework
− Language interoperability
− Overhead on function invocation, not execution
− In Babel, some argument types require adaptation 

between languages: Array, String, Complex, etc.
• CCA model is "embarrassingly parallel"

− Not currently a performance issue
• We plan to keep it that way!
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Environments Measured

• Native languages
− C calling C
− C++ calling C++
− Fortran77 calling Fortran77

• Ccaffeine (C++-based CCA framework)
− Same process, inter-component calls

• Babel
− All combinations of C, C++, F77 calling each other

• OmniORB (C++-based CORBA environment)
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Native Languages: Baseline Results

• F77 calls to empty functions with various 
arguments average 17 ns each

• C timings: 
− "simple" args: same as F77
− average 1.1x F77

• C++ timings:
− "simple" args: 1.2x F77
− average 1.8x F77
− virtual function calls average 2.8x F77
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Babel Results 
(Relative to Native F77)

14.24.4F77F77
13.34.9F77C++
10.34.1F77C
15.34.1C++F77
14.54.9C++C++
12.23.9C++C

7.32.7CF77
6.33.5CC++
3.82.6CC

Overall 
Average

"Simple" 
Args.

Called 
Lang.

Calling 
Lang.
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Babel Adaptation Costs

49.226.839.0String (by value)
12184.343.7String (by ref)
1.02.2255Ordered Array

1.53.557.3Double Complex 
(by value)

1.55.845.0Double Complex 
(by ref)

1.52.349.8Complex (by 
value)

3.03.343.7Bool
1.811.444.3Array

F77 to F77
(Rel. C to C)

C++ to C++
(Rel. C to C)

C to C
Time (ns)

Argument
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Comparing Environments

Overall 
Average

"Simple" 
Args.

97.62.83.817

91.12.42.618

OmniORB
Rel. F77

Ccaffeine
Rel. F77

Babel C to C
Rel. F77

Native F77
Time (ns)
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Observations

• Overhead equivalent to wrapping each call in several 
extra layers of function calls

• Only significant for frequently called functions (at 
interfaces) with little work

• In "full" CCA environment (Babel integrated w/ 
framework), overhead is just Babel virtual function 
call

• Possibilities to reduce overhead where performance 
really critical
− Use native language rather than Babel
− Change design so calls are intra-component
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Summary

• Component environments are intended to help 
manage the complexity of building large-scale 
software systems

• CCA is specifically designed for the needs of large-
scale high-performance scientific simulation

• Performance is a primary consideration
− Design allows implementations to minimize overheads
− Actual implementations provide good performance

• For more info on CCA visit http://www.cca-forum.org


