
122 June 2002 Workshop on Performance Optimization via High Level Languages and Libraries

Center for Component Technology for Terascale Simulation Software

A Component Architecture for 
High Performance Computing

David E. Bernholdt, Wael R. Elwasif, and 
James A. Kohl

Oak Ridge National Laboratory

Thomas G. W. Epperly
Lawrence Livermore National Laboratory

Research supported by the Mathematics, Information and Computational Sciences Office, 
Office of Advanced Scientific Computing Research, U.S. Dept. of Energy under contract no. 

DE-AC05-00OR22725 with UT-Battelle, LLC and W-7405-Eng-48 with the Univ. of California.
LLNL release UCRL-PRES-148723



11

Center for Component Technology for Terascale Simulation Software

Workshop on Performance Optimization via High Level Languages and Libraries22 June 2002

Performance Considerations

• Calls between components
− Framework
− Language interoperability
− Overhead on function invocation, not execution
− In Babel, some argument types require adaptation 

between languages: Array, String, Complex, etc.
• CCA model is "embarrassingly parallel"

− Not currently a performance issue
• We plan to keep it that way!



12

Center for Component Technology for Terascale Simulation Software

Workshop on Performance Optimization via High Level Languages and Libraries22 June 2002

Environments Measured

• Native languages
− C calling C
− C++ calling C++
− Fortran77 calling Fortran77

• Ccaffeine (C++-based CCA framework)
− Same process, inter-component calls

• Babel
− All combinations of C, C++, F77 calling each other

• OmniORB (C++-based CORBA environment)



13

Center for Component Technology for Terascale Simulation Software

Workshop on Performance Optimization via High Level Languages and Libraries22 June 2002

Native Languages: Baseline Results

• F77 calls to empty functions with various 
arguments average 17 ns each

• C timings: 
− "simple" args: same as F77
− average 1.1x F77

• C++ timings:
− "simple" args: 1.2x F77
− average 1.8x F77
− virtual function calls average 2.8x F77



14

Center for Component Technology for Terascale Simulation Software

Workshop on Performance Optimization via High Level Languages and Libraries22 June 2002

Babel Results 
(Relative to Native F77)

14.24.4F77F77
13.34.9F77C++
10.34.1F77C
15.34.1C++F77
14.54.9C++C++
12.23.9C++C

7.32.7CF77
6.33.5CC++
3.82.6CC

Overall 
Average

"Simple" 
Args.

Called 
Lang.

Calling 
Lang.



15

Center for Component Technology for Terascale Simulation Software

Workshop on Performance Optimization via High Level Languages and Libraries22 June 2002

Babel Adaptation Costs

49.226.839.0String (by value)
12184.343.7String (by ref)
1.02.2255Ordered Array

1.53.557.3Double Complex 
(by value)

1.55.845.0Double Complex 
(by ref)

1.52.349.8Complex (by 
value)

3.03.343.7Bool
1.811.444.3Array

F77 to F77
(Rel. C to C)

C++ to C++
(Rel. C to C)

C to C
Time (ns)

Argument



16

Center for Component Technology for Terascale Simulation Software

Workshop on Performance Optimization via High Level Languages and Libraries22 June 2002

Comparing Environments

Overall 
Average

"Simple" 
Args.

97.62.83.817

91.12.42.618

OmniORB
Rel. F77

Ccaffeine
Rel. F77

Babel C to C
Rel. F77

Native F77
Time (ns)



17

Center for Component Technology for Terascale Simulation Software

Workshop on Performance Optimization via High Level Languages and Libraries22 June 2002

Observations

• Overhead equivalent to wrapping each call in several 
extra layers of function calls

• Only significant for frequently called functions (at 
interfaces) with little work

• In "full" CCA environment (Babel integrated w/ 
framework), overhead is just Babel virtual function 
call

• Possibilities to reduce overhead where performance 
really critical
− Use native language rather than Babel
− Change design so calls are intra-component



18

Center for Component Technology for Terascale Simulation Software

Workshop on Performance Optimization via High Level Languages and Libraries22 June 2002

Summary

• Component environments are intended to help 
manage the complexity of building large-scale 
software systems

• CCA is specifically designed for the needs of large-
scale high-performance scientific simulation

• Performance is a primary consideration
− Design allows implementations to minimize overheads
− Actual implementations provide good performance

• For more info on CCA visit http://www.cca-forum.org


