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Background & Motivation

• Component environments provide a means to 
manage the complexity of large-scale software 
systems

• Commodity component models have limitations for 
HPC use
− CORBA, COM/DCOM, Enterprise JavaBeans
− Human timescales, no parallelism, language limitations, 

larger burden on legacy code
• Visualization tools

− AVS, OpenDX, VTK, etc.
− Data-flow based

• Domain-specific component environments
− Overture, HDDA/DAGH, POOMA, Sierra, Hypre, SAMR
− Hard to get interoperability & reuse on large scale (esp. 

cross-cutting components)
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The Common Component 
Architecture

• A component model specifically designed for 
high-performance computing

• Supports both parallel and distributed 
applications

• Designed to be implementable without 
sacrificing performance

• Minimalist approach makes it easier to 
componentize existing software
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CCA Concepts: Components

• A component encapsulates a useful chunk of 
functionality
− Presents a well-defined interface to the outside 

world
− Outside world knows nothing of internal 

implementation
− “Size” of component up to architect/developer

• Based on OO concepts
• Conceptually similar to a library, but not the 

same
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CCA Concepts: Ports

• Components interact through well-defined interfaces, 
or ports

• Ports follow a uses/provides pattern
− A component may use a port (interface) provided by another
− Components can provide ports by implementing the interface

• Components may use and provide any number of 
ports

• Note: Links denote a caller/callee relationship, not  
dataflow!
− e.g., linSolve port might contain: solve(in A, out x, in b)

SolverComponent

linSolveusesSolver

PhysicsComponent
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CCA Concepts: Frameworks

• The framework provides the means to “hold” 
components and compose them into applications

• The framework is the application’s “main” or “program”
• Frameworks allow exchange of ports among 

components without exposing implementation details
• Frameworks may support sequential, distributed, or 

parallel execution models, or any combination they 
choose

• Frameworks provide a small set of standard services 
to components
− BuilderServices allow programs to compose CCA apps

• Frameworks may make themselves appear as 
components in order to connect to components in 
other frameworks
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What Does This Look Like?
• Launch framework (w/ or w/o GUI)
• Instantiate components required for app.
• Connect appropriate provided and used ports
• Start application (i.e. click Go port)

create TaoSolver TAOSolver
create MinsurfDriver MinsurfDriver
…
connect MinsurfDriver OptModel MinsurfModel OptModel
connect MinsurfDriver OptSolver TAOSolver OptSolver
…
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CCA Concepts: Direct Connection

• Components loaded into separate namespaces
in same address space (process) from shared 
libraries

• getPort call returns a pointer to the port’s function 
table

• Invoking a method on a port is equivalent to a 
C++ virtual function call: lookup function, invoke

• Maintains performance
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CCA Concepts: Parallelism
• Single component multiple 

data (SCMD) model is 
component analog of widely 
used SPMD model

• Each process loaded with the 
same set of components 
wired the same way

• Different components in same 
process “talk to each” other 
via ports and the framework

• Same component in different 
processes talk to each other 
through their favorite 
communications layer (i.e. 
MPI, PVM, GA)

• Also supports MPMD/MCMD 

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Beige

Framework stays “out of the way” 
of component parallelism
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CCA Concepts: Language 
Interoperability

• Existing language 
interoperability 
approaches are “point-
to-point” solutions

• Babel provides a unified 
approach in which all 
languages are 
considered peers

• Babel used primarily at 
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java
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Performance Considerations

• Calls between components
− Framework
− Language interoperability
− Overhead on function invocation, not execution
− In Babel, some argument types require adaptation 

between languages: Array, String, Complex, etc.
• CCA model is "embarrassingly parallel"

− Not currently a performance issue
• We plan to keep it that way!
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Environments Measured

• Native languages
− C calling C
− C++ calling C++
− Fortran77 calling Fortran77

• Ccaffeine (C++-based CCA framework)
− Same process, inter-component calls

• Babel
− All combinations of C, C++, F77 calling each other

• OmniORB (C++-based CORBA environment)
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Native Languages: Baseline Results

• F77 calls to empty functions with various 
arguments average 17 ns each

• C timings: 
− "simple" args: same as F77
− average 1.1x F77

• C++ timings:
− "simple" args: 1.2x F77
− average 1.8x F77
− virtual function calls average 2.8x F77
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Babel Results 
(Relative to Native F77)

14.24.4F77F77
13.34.9F77C++
10.34.1F77C
15.34.1C++F77
14.54.9C++C++
12.23.9C++C

7.32.7CF77
6.33.5CC++
3.82.6CC

Overall 
Average

"Simple" 
Args.

Called 
Lang.

Calling 
Lang.
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Babel Adaptation Costs

49.226.839.0String (by value)

12184.343.7String (by ref)

1.02.2255Ordered Array

1.53.557.3Double Complex 
(by value)

1.55.845.0Double Complex 
(by ref)

1.52.349.8Complex (by 
value)

3.03.343.7Bool

1.811.444.3Array

F77 to F77
(Rel. C to C)

C++ to C++
(Rel. C to C)

C to C
Time (ns)

Argument
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Comparing Environments

Overall 
Average

"Simple" 
Args.

97.62.83.817

91.12.42.618

OmniORB
Rel. F77

Ccaffeine
Rel. F77

Babel C to C
Rel. F77

Native F77
Time (ns)
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Observations

• Overhead equivalent to wrapping each call in several 
extra layers of function calls

• Only significant for frequently called functions (at 
interfaces) with little work

• In "full" CCA environment (Babel integrated w/ 
framework), overhead is just Babel virtual function 
call

• Possibilities to reduce overhead where performance 
really critical
− Adjust granularity of work (i.e. blocking interfaces)
− Use native language rather than Babel
− Change design so calls are intra-component
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Summary

• Component environments are intended to help 
manage the complexity of building large-scale 
software systems

• CCA is specifically designed for the needs of large-
scale high-performance scientific simulation

• Performance is a primary consideration
− Design allows implementations to minimize overheads
− Actual implementations provide good performance

• For more info on CCA visit http://www.cca-forum.org


