
124 June 2002 CCA Forum Summer Meeting

Center for Component Technology for Terascale Simulation Software

A Component Architecture for
High Performance Computing

David E. Bernholdt, Wael R. Elwasif, and
James A. Kohl

Oak Ridge National Laboratory

Thomas G. W. Epperly
Lawrence Livermore National Laboratory

Research supported by the Mathematics, Information and Computational Sciences Office,
Office of Advanced Scientific Computing Research, U.S. Dept. of Energy under contract no.
DE-AC05-00OR22725 with UT-Battelle, LLC and W-7405-Eng-48 with the Univ. of California

2

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

Background & Motivation

• Component environments provide a means to
manage the complexity of large-scale software
systems

• Commodity component models have limitations for
HPC use
− CORBA, COM/DCOM, Enterprise JavaBeans
− Human timescales, no parallelism, language limitations,

larger burden on legacy code
• Visualization tools

− AVS, OpenDX, VTK, etc.
− Data-flow based

• Domain-specific component environments
− Overture, HDDA/DAGH, POOMA, Sierra, Hypre, SAMR
− Hard to get interoperability & reuse on large scale (esp.

cross-cutting components)

3

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

The Common Component
Architecture

• A component model specifically designed for
high-performance computing

• Supports both parallel and distributed
applications

• Designed to be implementable without
sacrificing performance

• Minimalist approach makes it easier to
componentize existing software

4

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

CCA Concepts: Components

• A component encapsulates a useful chunk of
functionality
− Presents a well-defined interface to the outside

world
− Outside world knows nothing of internal

implementation
− “Size” of component up to architect/developer

• Based on OO concepts
• Conceptually similar to a library, but not the

same

5

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

CCA Concepts: Ports

• Components interact through well-defined interfaces,
or ports

• Ports follow a uses/provides pattern
− A component may use a port (interface) provided by another
− Components can provide ports by implementing the interface

• Components may use and provide any number of
ports

• Note: Links denote a caller/callee relationship, not
dataflow!
− e.g., linSolve port might contain: solve(in A, out x, in b)

SolverComponent

linSolveusesSolver

PhysicsComponent

6

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

CCA Concepts: Frameworks

• The framework provides the means to “hold”
components and compose them into applications

• The framework is the application’s “main” or “program”
• Frameworks allow exchange of ports among

components without exposing implementation details
• Frameworks may support sequential, distributed, or

parallel execution models, or any combination they
choose

• Frameworks provide a small set of standard services
to components
− BuilderServices allow programs to compose CCA apps

• Frameworks may make themselves appear as
components in order to connect to components in
other frameworks

7

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

What Does This Look Like?
• Launch framework (w/ or w/o GUI)
• Instantiate components required for app.
• Connect appropriate provided and used ports
• Start application (i.e. click Go port)

create TaoSolver TAOSolver
create MinsurfDriver MinsurfDriver
…
connect MinsurfDriver OptModel MinsurfModel OptModel
connect MinsurfDriver OptSolver TAOSolver OptSolver
…

8

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

CCA Concepts: Direct Connection

• Components loaded into separate namespaces
in same address space (process) from shared
libraries

• getPort call returns a pointer to the port’s function
table

• Invoking a method on a port is equivalent to a
C++ virtual function call: lookup function, invoke

• Maintains performance

9

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

CCA Concepts: Parallelism
• Single component multiple

data (SCMD) model is
component analog of widely
used SPMD model

• Each process loaded with the
same set of components
wired the same way

• Different components in same
process “talk to each” other
via ports and the framework

• Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Also supports MPMD/MCMD

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Beige

Framework stays “out of the way”
of component parallelism

10

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

CCA Concepts: Language
Interoperability

• Existing language
interoperability
approaches are “point-
to-point” solutions

• Babel provides a unified
approach in which all
languages are
considered peers

• Babel used primarily at
interfaces

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java

11

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

Performance Considerations

• Calls between components
− Framework
− Language interoperability
− Overhead on function invocation, not execution
− In Babel, some argument types require adaptation

between languages: Array, String, Complex, etc.
• CCA model is "embarrassingly parallel"

− Not currently a performance issue
• We plan to keep it that way!

12

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

Environments Measured

• Native languages
− C calling C
− C++ calling C++
− Fortran77 calling Fortran77

• Ccaffeine (C++-based CCA framework)
− Same process, inter-component calls

• Babel
− All combinations of C, C++, F77 calling each other

• OmniORB (C++-based CORBA environment)

13

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

Native Languages: Baseline Results

• F77 calls to empty functions with various
arguments average 17 ns each

• C timings:
− "simple" args: same as F77
− average 1.1x F77

• C++ timings:
− "simple" args: 1.2x F77
− average 1.8x F77
− virtual function calls average 2.8x F77

14

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

Babel Results
(Relative to Native F77)

14.24.4F77F77
13.34.9F77C++
10.34.1F77C
15.34.1C++F77
14.54.9C++C++
12.23.9C++C

7.32.7CF77
6.33.5CC++
3.82.6CC

Overall
Average

"Simple"
Args.

Called
Lang.

Calling
Lang.

15

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

Babel Adaptation Costs

49.226.839.0String (by value)

12184.343.7String (by ref)

1.02.2255Ordered Array

1.53.557.3Double Complex
(by value)

1.55.845.0Double Complex
(by ref)

1.52.349.8Complex (by
value)

3.03.343.7Bool

1.811.444.3Array

F77 to F77
(Rel. C to C)

C++ to C++
(Rel. C to C)

C to C
Time (ns)

Argument

16

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

Comparing Environments

Overall
Average

"Simple"
Args.

97.62.83.817

91.12.42.618

OmniORB
Rel. F77

Ccaffeine
Rel. F77

Babel C to C
Rel. F77

Native F77
Time (ns)

17

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

Observations

• Overhead equivalent to wrapping each call in several
extra layers of function calls

• Only significant for frequently called functions (at
interfaces) with little work

• In "full" CCA environment (Babel integrated w/
framework), overhead is just Babel virtual function
call

• Possibilities to reduce overhead where performance
really critical
− Adjust granularity of work (i.e. blocking interfaces)
− Use native language rather than Babel
− Change design so calls are intra-component

18

Center for Component Technology for Terascale Simulation Software

CCA Forum Summer Meeting24 June 2002

Summary

• Component environments are intended to help
manage the complexity of building large-scale
software systems

• CCA is specifically designed for the needs of large-
scale high-performance scientific simulation

• Performance is a primary consideration
− Design allows implementations to minimize overheads
− Actual implementations provide good performance

• For more info on CCA visit http://www.cca-forum.org

