
130 Sep 2002 9th EuroPVM/MPI

Communication Infrastructure in
High-Performance Component-
Based Scientific Computing

David E. Bernholdt, Wael R. Elwasif, and
James A. Kohl
Computer Science and Mathematics Division
Oak Ridge National Laboratory

2

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

Parallel Communications in a
Component Environment

• Can use libraries in familiar fashion
− Associated with application

• New ways enabled by component environment
− Associated with individual components
− As a component

• New issues in how different components expect to
use comms libraries

• Goal: present possibilities, issues and generate
discussion

3

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

CCA: Background & Motivation

• Commodity component models have limitations for
HPC use
− CORBA, COM/DCOM, Enterprise JavaBeans
− Human timescales, no parallelism, language limitations,

larger burden on legacy code
• Visualization tools

− AVS, OpenDX, VTK, etc.
− Data-flow based

• Domain-specific component environments
− Overture, HDDA/DAGH, POOMA, Sierra, Hypre, SAMR
− Hard to get interoperability & reuse on large scale (esp.

cross-cutting components)

4

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

The Common Component
Architecture

• A component model specifically designed for
high-performance computing

• Supports both parallel and distributed
applications

• Designed to be implementable without
sacrificing performance

• Minimalist approach makes it easier to
componentize existing software

5

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

CCA Concepts: Components

• A component encapsulates a useful chunk of
functionality
− Presents a well-defined interface to the outside world
− Outside world knows nothing of internal implementation
− “Size” of component up to architect/developer

• Based on OO concepts
• Conceptually similar to a library, but not the same

− Interface more rigorous than most non-OO languages
− Can have multiple instances (possibly different versions)

connected to specific components as needed

6

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

CCA Concepts: Ports

• Components interact through well-defined interfaces,
or ports

• Ports follow a uses/provides pattern
− A component may use a port (interface) provided by another
− Components can provide ports by implementing the interface

• Components may use and provide any number of
ports

• Note: Links denote a caller/callee relationship, not
dataflow!
− e.g., linSolve port might contain: solve(in A, out x, in b)

SolverComponent

linSolveusesSolver

PhysicsComponent

7

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

CCA Concepts: Frameworks

• The framework provides the means to “hold”
components and compose them into applications

• The framework is often the application’s “main” or
“program”

• Frameworks allow exchange of ports among
components without exposing implementation details

• Frameworks may support sequential, distributed, or
parallel execution models, or any combination they
choose

8

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

CCA Concepts: Direct Connection

• Components loaded into separate namespaces
in same address space (process) from shared
libraries

• getPort call returns a pointer to the port’s function
table

• Invoking a method on a port is equivalent to a
C++ virtual function call: lookup function, invoke

• Maintains performance (lookup can be cached)

9

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

CCA Concepts: Parallelism

• Single component multiple
data (SCMD) model is
component analog of widely
used SPMD model

• Each process loaded with the
same set of components
wired the same way

• Different components in same
process “talk to each” other
via ports and the framework

• Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Also supports MPMD/MCMD

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Beige

?

10

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

CCA Concepts: Language
Interoperability

• Existing language
interoperability approaches
are “point-to-point” solutions

• Babel provides a unified
approach in which all
languages are considered
peers

• Babel used primarily at
interfaces

• Can be used separate from
CCA

C

C++

f77

f90

Python

Java

Babel

C

C++

f77

f90

Python

Java

11

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

Current Status of CCA
• Specification version 0.5
• Working prototype frameworks
• Working multi-component parallel and distributed

demonstration applications
• Draft specifications for

− Basic scientific data objects
− MxN parallel data redistribution

• SC01 demonstrations
− four different “direct connect” applications, add’l distributed
− DC demos: 31 distinct components, up to 17 in any single

application, 6 used in more than one application
− Components leverage and extend parallel software tools

including CUMULVS, GrACE, LSODE, MPICH, PAWS,
PETSc, PVM, SUMAA3d, TAO, and Trilinos.

• More than 15 projects adopting CCA
• CCA already used for “serious” applications

12

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

“Normal” Libraries in a Component
Environment

• Library is linked into framework
• Visible to all components

(global namespace)
• Accessed as library (not

component)
• Model: Components expect

(can use) unified environment
• Components may require

support services
− How does each component

get a unique communicator to
use?

• Multithreaded component
environments are more
complex for single-threaded
libraries

P0 P1 P2 P3

M
PI

PV
M

et
c.

13

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

“Private” Libraries in a Component
Environment

• Library linked to individual
component

• Visible only to linked component
• Accessed as library (not

component)
• Model: Each component

completely separate entity for
comms
− No cross-component comms

• May break library’s model
− Multiple copies running within a

single process

P0 P1 P2 P3

MPI

PVM

MPI MPI MPI

PVM PVM PVM

14

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

Libraries Components

• Library is a component
• Visible to all, but…
• Accessed as a component

− Requires user code to
change

− May be possible to wrap
component interface to look
like native one. Should we?

• Model:
− unified environment via

single instance of
messaging component

− Independent environments
by multiple instances

PVM PVM PVMPVM

P0 P1 P2 P3

MPI MPI MPIMPI

15

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

Summary of Cases

• “Normal” library: Unified communication environment
for all components
− Components need help to ensure they use separate

communicators
− Threaded environments may be problematic

• “Private” library:Independent communication
environment for each component
− No cross-component communication possible

• Library as Component: Supports both
− Must orchestrate initialization/finalization
− Components may need help to ensure they use separate

communicators

16

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

Looking Forward: Parallel
Component-Based Applications

• Path of least resistance is “normal” library
− But components may not “play well”

• Component approach provides greatest flexibility, but
imposes the greatest costs on users
− Should users be pushed toward this?
− How hard should we work to provide a wrapping that allows

the native library interface to be used with a component?
• Educate users in intelligent use of messaging in

library/component context (any difference?)
• Need mechanisms to assign context to components,

other startup help

17

Oak Ridge National Laboratory

9th EuroPVM/MPI30 Sep 2002

Information Pointers
• http://www.cca-forum.org

• Mailing list: cca-forum@cca-forum.org (sign up at
http://www.cca-forum.org/mailman/listinfo/cca-forum/)

• http://www.cca-forum.org/tutorials/

• CCA contacts:

bernholdtde@ornl.govORNLDavid BernholdtApplications Integration

kohlja@ornl.govORNLJim KohlMxN Data Redistribution

mcinnes@anl.govANLLois McInnesScientific Data Components
skohn@llnl.govLLNLScott KohnFrameworks
rob@sandia.govSNLRob ArmstrongLead PI

