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ABSTRACT

When fitting data to theory using generalized least squares or similar procedures (as, for example, in
R-matrix analyses of cross section data), it is commonly accepted that the data covariance matrix
should be explicitly generated and utilized, as a means of incorporating uncertainties inherent in the
data-reduction process into the analysis process. In practice, however, when very large data sets are
being analyzed, the data covariance matrix is seldom included because it is perceived as being
difficult to generate, and too large to store and invert. In this paper, alternative procedures are
described. One approach which is being used successfully in the SAMMY R-matrix code involves
use of an implicit data covariance matrix; in this procedure, the mathematical formula for the data
covariance matrix is manipulated to provide the inverse of the data covariance matrix without ever
explicitly generating or inverting that matrix. Other procedures {such as fitting to raw data) are also
discussed.
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1. INTRODUCTION

All data evaluation schemes require the use of some type of fitting procedure, to obtain those values
of the parameters which give the best fit to experimental data, The fitting procedure used in the
SAMMY R-matrix code[1,2] is Bayes’ method, sometimes called generalized least squares. (The
perhaps-more-familiar least squares method can be considered a special case of Bayes’ method.) In
Section 2 of this paper, notation and equations for Bayes’ method are given, and one possible
derivation is described.

In either Bayes’ method or least squares, the equations relating the prior (initial) values of the
parameters to the posterior values (those values which provide a better fit to the data) require the
inverse of the data covariance matrix. Because the size of that matrix may be prohibitively large,
generating, storing, and inverting it can be costly and error-prone even with today’s modern
computer systems.

Fortunately, viable alternatives exist. One attractive, but often impractical, alternative is to fit
directly to the measured data prior to any corrections to the data (in which case the data covariance
matrix is intrinsically diagonal). A more practical method involves the implicit use of the data
covariance matrix without the explicit generation, storage, or inversion of that matrix; see Section
3 for details. Another practical alternative is to include some, but not necessarily all, of the data-
reduction processes within the analysis. Examples using each method are given in Section 4.
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2. BAYES’ EQUATIONS

The equations used for finding the best-fitting parameter values can be derived from Bayes’ Theorem
[3] and the following basic assumptions: (1) Both the data and the parameter values are chosen from
normal (Gaussian) distributions. (2) The calculated value is a linear function of the parameters.
Clearly neither assumption is exactly correct: (1) The raw data obey Poisson statistics; parameters
obey a variety of statistics. (2) The model used to calculate the observable (e.g., the R-matrix theory
used to calculate the cross section) is rarely linear with respect to the parameters (e.g., the cross
section is not a linear function of the neutron width). Nevertheless, experience has shown that it is
often possible to use the equations derived from these only-approximately-true assumptions to
determine values of the parameters which give a good fit to the data.

A derivation of Bayes’ Equations is given in the SAMMY manual [1], and will not be repeated here;
instead we quote the results. Let P represent the parameter values and M the associated covariance
matrix, D represent the experimental data to be fitted and V" the associated covariance matrix, T
represent the theoretical value calculated at the initial parameter values P, and ( represent the partial
derivatives of the theory with respect to the parameters (G is sometimes called the sensitivity
matrix). Primes indicated the updated posterior values. In matrix form, Bayes’ Equations can be
written as

P-P=MY ad M’

:(Ml-}-W)’l
Y=G'V 1 (D-T) and W=G'V'G

‘v : (1)
where the second line of equations define Y and W .

To derive the least squares equations from Bayes’ Equations requires one additional assumption, that
the prior parameter covariance matrix M be diagonal and infinite (so that A/ is zero).

In practice one must generally use a slightly more complicated form of these equations, to include
an iterative procedure which partially compensates for non-linearities. Explicitly, the iterative
equations take the form

P(rr+1) -P = M(n+l) Y(n)
M(u+1) - (M—l_'_W(n))fl
yo - ey -1 (D_T(n)_G(n)(P_P(n)))
wim o G-l ) , )
in which the superscript n denotes evaluation at the n™ set of parameter values. For simplicity’s sake,

in the remainder of this paper only the linear form, Eq. (1), will be discussed, but the reader should
bear in mind that results are generally applicable when using Eq. (2).
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3. GENERATING THE DATA COVARIANCE MATRIX

In practical applications, the data covariance matrix Fis diagonal for those situations in which each
data point is a separate and independent measurement. For example, in neutron time-of-flight
measurements, the “raw” data are counts (as measured by the detector) per time channel (which is
related to the energy of the neutron). Each “count” constitutes an independent measurement, and
each obeys Poisson statistics.

For the data to be directly useful, they are converted from counts per time channel to cross section
as a function of energy. This conversion, or data-reduction, process involves such operations as
subtraction of background counts and multiplication by a normalization. It is the data-reduction
process which leads to non-zero off-diagonal data covariance matrix elements.

To illustrate the derivation of the data covariance matrix, we first define some notation: let »,
represent the raw datum for channel i, and d, represent the reduced datum for energy £, Fora simple
example in which only a constant normalization a and a constant background b are required to
convert from measured counts to cross section, the data-reduction equation would involve two
parameters,

d=ar,-b . 3)

To generate the covariance matrix associated with the reduced data d, we begin by taking small
increments of the data-reduction equation. For the simple example of Eq. (3), this gives

0d, =dar, +adr,-3b . )

Multiplying by 8, and taking expectation values gives the covariance between points i and j,

Vy = (8d,8d,) = ((8ar, + adr,-5b) (sar, + abr,-5b))

:'<(.50)2>’Airj + a2<6rr’8rj> * <(55)2>

A2
= A arr; +azA2ri5U+A2b ) )
in which all the cross terms have been dropped because each measurement (of a, b, r,, and r)is
assumed to be independent of the others. Explicitly, if there were only four data points, the lower
half of the (symmetric) covariance matrix for the reduced data would be

(a® N+ rlA%a+ &%)
(ryry Aa + A%h ) (alAlr, + ] Ala+ A%)
(rry A%a + A%) (ryrsAla+A%)  (a A +r] Ala+ A7)
(rir,Aa+ Ah) (ryry Ala + A%) (ryryAta+ A%h) (a*N'r+r)Na+ )] (g
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For the general case, the data-reduction equation analogous to Eq. (3) would take the form
di = D(rps 415 435 G3-) > o)
where the variables g are data-reduction parameters. [There might in some cases also be dependence

on other raw data points, a possibility which complicates the analysis only slightly and which will
be ignored in this report.] The covariance matrix then can be readily derived as foliows:

§d, = o, Lo, }j '8qk
D, aD, oD, aD.,
V.. = {8d.8d.) = §,, -+ Ar, —¢ R —
if < i j> if ari F a]"i + Zk: ; aqk < [> aq[ ®)

Here the quantity< 8q,9q, > represents the covariance matrix for the data-reduction parameters; we

shall let O represent this covariance matrix. Often Q will be diagonal, if each data-reduction
parameter is measured separately. In general O may have non-zero off-diagonal elements, as, for
example, when a functional form is fitted to a measured background. In any case the size of this
matrix is very small (~tens) compared to the number of data points (~ hundreds of thousands in some
cases).

3.1. Implicit Data Covariance Matrix

As seen above, it is possible to generate the full off-diagonal data covariance matrix for any
measurement. Nevertheless, it is not necessary to do so. From Eq. (8), the data covariance matrix
can be seen to consist of two pieces, the first of which is diagonal and the second of which is
separable. We define matrices v and X as

oD, ., aD, aD,
v, =8, — A'r, — , and X, = .
/ 4 Gr,. al"- aqk (9)

so that v is the diagonal term of the covariance matrix and X represents the partial derivative of the
reduced data with respect to the data-reduction parameter. Then Eq. (8) can be written in matrix

form as
V' - U’ u E Z th)(:ik ® (10)

where the boxes are used to indicated the relative size of the matrices; solid outlines indicate full off-
diagonal matrices, and dashed outlines indicate diagonal matrices.
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The inverse of ¥is can be formally derived as

Vl=(v+X QX = vt oy (O Xy ) Ty
(11}
= v_l — v’lXZ’lev—l

] T T

| ] 1 i ] 1

= | i — | 11a | mas—— | | ;

A I . d I 1

where Z is defined by

Z=0'+X'vlXx (12)

From Eq. (11) and (12), it is clear that one could find the inverse of ¥ without explicitly generating
V or inverting this large matrix. In addition, from Bayes’ Equations (Eq. (1)), it is clear that there
is no need to explicitly generate or store even the inverse of V. Instead, only the quantities ¥ and
W are required:

Y =G'V1(D-T)
t,, -1 F R | -1 -1 (13)
=G Y (D-TY-Gv'XZ1Xv(D-T)
T T
1 1 I 1
o | o =
I | I j
and
W=GVle
=G'G-GylxXZzxNyIG a4

The implicit data covariance matrix option has been used successfully in the SAMMY R-matrix code
for several years [4,5]. In the next section a simple example illustrates how this can be used in
practice.
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4. EXAMPLE

Let us assume that a neutron time-of-flight measurement has been made of three resonances for a
fission cross section in the resolved-resonance region. The “raw data” consist of counts as a function
of energy. [These data were, in fact, generated artificially, starting from a subset of a **' Am fission
cross section measurement, adding a constant background and normalization to simulate raw data.]

The data reduction process converts the counts to cross section via such operations as subtraction
of background counts and/or multiplication by a normalization whose value is related to the incident
neutron flux. In our example, we assume that the experimentalist has (erroneously) determined that
the normalization a and background b have the values a = 0.00105 + 0.00007 and 5 = 1.05  1.05;
the reduced data d, are related to the raw data as in Eq. (3), and the associated data covariance matrix
is as shown in Eq. (6).

The question of interest is the following: Is it possible to obtain an accurate representation of the
“true” cross section by analyzing data which have been improperly reduced? The answer is yes, as
shall be illustrated below.

4.1. Explicit Data Covariance Method

When the improperly-reduced data are analyzed by the R-matrix code SAMMY, using the full data
covariance matrix, Bayes’ Equations provide an updated set of parameter values and associated
covariance matrix. The cross sections calculated from the initial and from the final parameter values
are shown in Fig. 1. Here the crosses represent the (reduced) data, the dashed curve represents the
cross section evaluated from obviously-incorrect prior parameter values, and the solid curve is the
cross section evaluated from the posterior parameters. While it is not immediately apparent from
this figure that the posterior fit is accurate, we can readily convince ourselves that it is by noting the
obvious background problem and adjusting the fitting curve upward, as shown in Fig. 2. The dotted
curve in this figure is the unadjusted fit (identical to the solid curve of Fig. 1); the solid curve is the
adjusted fit, which clearly does agree with the data.

gof ' : : =] aol . ;
2 0 s licit data . g 8o} -
£ sing explicit da £ Adiusted lts fr

co tri g ljusted results from
= 701 varance matrix b 5 0 fitting with explicit 7
g . .8 80l  data covariance matrix J
=) =
kel 1 -2 1
= =
g ] Z ]
= =
& i o i
0.0 0.4 G.8 1.2 1.6
Energy in eV Energy in eV

Figure 1. Fitting the reduced data using the explicit
data covariance matrix. Crosses represent the
incorrectly-reduced data, the dashed curve shows
the calculation using prior parameter values, and
the solid curve gives the calculation using posterior
parameter values.

Figure 2. Adjusting the theoretical fit to include the
proper backgronnd. The dotted curve represents
the unadjusted fit (identical to the solid curve in
Fig. 1). The solid curve is adjusted for the proper
background, giving good agreement with the
incorrectly-reduced data,
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Resonance parameters generated by this method (fitting to reduced data using the explicit covariance
matrix) and by other methods are shown in Table I. For our example, each resonance was described

by five R-matrix parameters: energy F; and widths I’ ,

U loy,and T ;- However, only those

combinations which are relevant to fission cross sections for isolated resonances are included in the
table; these are £, I, =T, + T, +| Uil +10 pand Iy = | Ty [+ 150 |

4.2. Implicit Data Covariance Method

Virtuzally identical results are obtained using the implicit data covariance matrix, as described in
Section 3.1; see Fig. 3 and Table L.

Table I. Comparison of parameter values.

Values for 3* are normalized to the “raw data” value.

explicit implicit diagonal | statistical
data data part of uncer-
prior |covariance |covariance raw hybrid |covariance| tainties
values matrix matrix data method matrix only
E . 3000 .3073 L3073 L3071 L3073 .3081 .3086
! +.0294 +.0001 +.0001 +.0001 +.0001 +.0001 +.0001
r 47,39 43.60 43.57 43.41 43,57 62.09 67.85
! * 4.70 + 0.20 +0.20 * 0.20 £ 0.20 + 0.26 + 0.22
T .3200 . 3237 L3234 L3277 .3234 .4116 L4782
Yl +.0233 +.0198 +.0198 +.0204 +.0198 +.0219 +.0226
E .5900 L5765 .5765 .5758 .5765 .5776 .5781
z +.0321 +.0001 +.0002 +.0002 +.0001 +£.0002 +£.0002
r 48.15 46.50 46.41 43.77 46.41 108.73 117.09
z + 4,75 * 0.49 £ 0.49 * 0.52 * 0.49 + 0.85 + 0.63
T L6000 . 4455 .4450 4417 .4450 .8667 . 9810
i +.0447 +.0335 +£.0335 +.0337 +.0335 £.0464 +0.050
E, 1.270 1.2696 1.2695 1.2695 1.2696 1.2695 1.2693
+ .356 +.0001 +.0001 +.0001 +£.0001 +.0008 *.0001
T, 47,69 42,91 42,88 42.33 42.41 57.21 59.77
* 4.67 * 0.33 + 0.33 + 0.34 * 0.33 L+ 0.42 +0.42
I, .8001 .5674 L5671 .5772 .5627 .7389 L7627
4 +.0800 +.0474 +.0474 +.0488 +.0481 £.0542 +£.0481

r 46. 1.5 1.4 1.0 1.0 6.9 22.
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Figure 3, Fitting the reduced data using the implicit
data covariance matrix. Crosses represent the
reduced data, dashed curve the calculation using
prior values of the parameters, and solid curve the
calculation using posterior parameter values.
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Figure 4. Fitting the raw data directly. Crosses
represent the raw data, dashed curve the
calculation using prior values of the parameters,
and solid curve the calculation using posterior
parameter values.

4.3. Fitting to Raw Data

While both the explicit and the implicit covariance methods can provide correct values for
resonance parameters and covariance matrix, an analyst may find the results somewhat unsatisfying
because the plotted curves do not appear to agree with the experimental data (as in Figs. 1 or 3,
because the assumed background is incorrect). In our simple example, adjusting the theoretical
curve to agree with the data (as in Fig. 2) is straightforward because the difference is due only to a
constant background. In general, such manual adjustment is not possible.

A more satisfying method might be to include the data-reduction parameters within the analysis
procedure. That is, rather than transforming from directly-measured values 7, to reduced values 4,
as in Eq. (3), the analyst would fit directly to the raw data. The theoretical calculation must then
include the (reverse) transformation from cross section to counts, analogous to Eq. (3),

I, = 4o+ B, (15)
and data-reduction parameters 4 and B may be treated on equal basis with the R-matrix parameters
(i.e., included in the fitting process). Resonance parameter values obtained using this procedure are
given in Table I; plots are shown in Fig. 4. Initial values for 4 and B used in this run were 950 + 50
and 1000 £ 1000 respectively; posterior values are 965.90 + 37.65 and 573.59 £ 17.61.

The argument can be made that this method (fitting to raw data) is mathematically more rigorous
than the methods involving the data covariance matrix, because the data covariance matrix is
implicitly (erroneously) assumed to be linear. The derivation of the covariance matrix, Eq. (8),
ignores second- and higher-order terms. Fitting to raw data completely eliminates that potential
problem; R-matrix parameter values extracted by fitting to raw data should, in general, be more
accurate than those found using other methods. For this example, differences between this method
and the other two are small but noticeable; see Table 1.
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4.4. Hybrid Method

The method of fitting to raw data, while seemingly useful and rigorous, also has drawbacks: Analysis
codes such as SAMMY wouid be required to include mathematical descriptions of all data-reduction
processes for all types of experiments. Experimentalists would have to provide analysts with both
the raw data and the details of the data reduction process. Neither situation is likely to occur.

There is, however, yet another possibility, which we will call the hybrid method. Here the analyst
will fit to the reduced data, including only the statistical uncertainties for the data covariance matrix.
(These statistical uncertainties correspond to the square root of v, of Eq. (9), so-called because they
are derived directly from the statistical distribution of the raw data.) Data-reduction parameters such
as normalization and background will be included in the theoretical calculation. Prior values for
these parameters will be set so that the effect is zero (that is, normalization would be set to one and
background to zero), and prior values of the uncertainties on these data-reduction parameters will
correspond to the measured uncertainties on the parameters used to reduce the data. For our example
with only normalization and background, the theoretical calculation is

T, = Ao+ B, (16)

with 4 = 1.0 and prior uncertainty A4 = Aa/a = 0.001, and B = 0.0 with prior value for uncertainty
AB=4b = 0.1. Using both 4 and B (along with the R-matrix parameters) as fitting parameters in
‘a SAMMY run produces the results reported in Fig. 5 and Table 1.

With this hybrid methed (as with the fit-to-raw-data method), posterior values for the data-reduction
parameters are included in the SAMMY output. The posterior value for A is 1.000 + 0.001 and for
Bis4.471£0.016. [If the analyst wished, he could modify the data set by this value of B to simplify
further analyses, so that the “new” experimental data would be more closely related to the cross
section of interest.]

gU L T ¥ T U . T ] 90 [ T T T ~ T ]
f I
w 80L  Hybrid method : i 80 . - : J
Gl meehion o e
I i by [ -
..x; a0 with theory § k: ﬁ
R= -
g o
= g
2 = i
@ g
2] L2 -
a v
5 g
© @]

Energy in eV

Figure 5. Fitting the reduced data using the hybrid
method. Crosses represent the reduced data,
dashed curve the calculation using prior values of
the parameters, and solid curve the calculation
using posterior parameter values.

Energy in eV

Figure 6. Fitting the reduced data using only the
statistical uncertainties. Crosses represent the
reduced data, dashed curve the calculation vsing
prior values of the parameters, and solid curve the
calculation using posterior parameter values.
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4.5. Diagonal Data Covariance Method

One additional method should be mentioned here, as it is commonly used but can lead to inaccurate
results. This method involves fitting to the reduced data, but using only the diagonal elements of the
data covariance matrix, ignoring all off-diagonal contributions. Two possibilities exist for this
method: the first is to use only the statistical contribution (v, of Eq. (10)) for the data covariance
matrix; the second is to include so-called “systematic™ or “common” errors (the second term in Eq.
(10)) but neglect the terms with i = ;.

Inasituation such as our example, where there were errors in the data-reduction process, this method
will produce erroneous results. In the last two columns of Table I, we find that the resonance
energies are reasonably well determined by this method, but the widths are quite poorly determined.
The reason becomes clear when Fig. 6 is examined: because this method makes no provision for an
incorrect background, the best-fit curve is one which goes nearly to zero between resonances while
attempting to fit the resonance peak. Hence, the shape is badly distorted.

5. CONCLUSIONS

In this report we have discussed several different practical alternatives for properly including
measured uncertainties into the data analysis process. Alternatives include the use of either explicit
or implicit data covariance matrices, fitting to raw data, and a hybrid method (in which some of the
data-reduction parameters are treated as search parameters). Each of the alternatives is available in
the SAMMY R-Matrix analysis code (though only to a limited extent, e.g., for fitting to raw data).
The common practice of ignoring off-diagonal data covariances was shown to be incorrect, in that
its use can lead to erroneous results.

The mathematical methods underlying the implicit data covariance method were presented in some
detail, as this approach is not yet in common use.
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