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DOE/USCAR
Cooperative Research Commitment

The structure for government electric vehicle research was 
revised and announced early this year by DOE and the U.S. 
Council for Automotive Research composed of automakers 
Ford, General Motors, and DaimlerChrysler.

• Name - FreedomCAR = “Freedom” and “Cooperative Automotive 
Research”

• Represents DOE’s commitment to developing public/private 
partnerships to fund high risk, high-payoff research into advanced 
automotive technologies.

• Emphasizes fuel cells to power automobiles without air pollution.
• Progenitor is the Partnership for a New Generation of Vehicles 

(PNGV) initiative that ran from 1993 through 2001.
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FreedomCAR Goals
Since transportation consumes 67% of our nation’s 
petroleum and steady growth of imported oil needed to 
meet U.S. requirements  (current levels of 10 million 
barrels each day) is not sustainable over the long term 
the research partnership goals are to develop cars and 
trucks that are:

• Free from imported oil
• Cheaper to operate
• Pollution free
• Competitively priced
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Power Electronics and Electric 
Machinery Research Center

PEEMRC is the U.S. Department of Energy’s 
broad-based power electronic and electric 
machinery research center. 

www.ornl.gov/etd/peemrc  
The center has advanced technology in:

• Soft-switched inverters 
• Multilevel inverters
• Non-active power compensation 
• Motor control techniques 
• Efficient, compact electric machines
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The PEEMRC’s National Laboratory Role
• Conducts fundamental research

• Evaluates commercially supplied prototype
hardware

• Assists in technical direction of the DOE’s
FreedomCAR and Vehicle Technologies’ Power 
Electronics and Electric Machinery Program

– Serves on FreedomCAR Electrical and Electronics 
Technical Team

– Evaluates proposals for DOE

– Lends technological expertise to help direct projects
and evaluate developing technologies.
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National User Facility

PEEMRC has been designated a DOE National User Facility.

> 700 square meters of laboratory space for developing 
prototype inverters, rectifiers, and electric machine 
technology.

Center has had 25 patents granted with several more pending. 

20 personnel, 10 with advanced degrees in electrical 
engineering, mechanical engineering, physics, nuclear 
engineering.
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Power Electronics Research Areas
Interface with distributed energy resources

such as microturbines and fuel cells
Multilevel converters for utility applications such 

as static var compensation, voltage sag support, 
HVDC intertie, large variable speed drives

Harmonics, power quality, and power filters
Hybrid electric vehicle (HEV) applications 

such as motor drives or dc-dc converters
Soft-switching inverters and dc-dc converters 
Application of wide-band gap power electronics
Simulation, modeling and analysis of power 

electronics for transportation and utility 
applications
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Electric Machine Technology Research

Novel electric machine technology
• Permanent magnet (axial and radial gap) 
• Switched reluctance
• Induction (novel designs and rotor bar technology)
• DC machines (advanced brush technology, 

soft-commutated, homopolar)
• Superconducting generator

Motor control – sensorless motor drive techniques, 
circuits and dual mode inverter control for extended 
constant power range at high speeds

Design, thermal, efficiency, and performance models
for AC machines 

Prognostics and failure diagnostic techniques
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FY 2002 PEEMRC Research
This past year the PEEMRC research and test activities have 
included:

• Development of inverter/converter topologies -
Multilevel  DC Link Inverter

• Development of field weakening by flux control -
HSUB motor

• Development of Field Weakening by inverter control -
Dual Mode Inverter Control for low inductance PM 
motors

• Evaluation of Switched Reluctance Motors for HEVs
• Motor/Inverter Modeling - SRM model on LabVIEW 

platform
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FY 2002 PEEMRC Research 
(continued)

• Automotive Electric Motor Drive (AEMD) validation 
testing and contract support

• Automotive Integrated Power Module (AIPM) 
validation testing and contract support

• Development of micro-sensors for automotive power 
electronics

• Modeling silicon carbide for transportation applications.
• Developed a real-time platform for evaluation of electric 

machinery control algorithms
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Multilevel DC Link Inverter to Reduce 
Current Ripple in Low Inductance

PM Motors

Developed and patented by Dr. Gui-Jia Su, ORNL
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MLDCLI Current Ripple Analysis
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Comparison of Traditional and
MLDCL Current Ripple
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Number of Levels
to Limit Current Ripple to 5%

(20 kHz Switching Frequency)
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Comparison of Simulated 
Current Waveforms at 5000 rpm

Traditional PWM inverter    5-level MLDCLI PWM Inverter



6

Six-Level MLDCLI 
Proof-of-Concept Testing
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Field Weakening by Flux Control
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Developed and patented by Dr. John Hsu, ORNL
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Diffused (rotor leakage) Flux
Reduces “Payoff” Air-gap Flux
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Use of PM*
to Reduce

Flux Diffusion
a) Diffuse flux leaks 

lowering main gap field.
b) PM redirects leaks to 

increase main gap field
c) Excitation field reverses 

to weaken main gap field.
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HSU-B Rotor
Outer and 
Inner “Rings”

Rotor outer ring

Rotor inner ring

Flux from exciter through 
air gap

Flux to stator 
through main air gap

Flux to exciter through 
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Flux from stator 
through main air gap
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Cut View of an Axial-gap HSU-B Motor
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HSU-B Equivalent Circuit and 
Control for Constant Power

Locus of current, I, for
constant power

V

I
J I Xs

E
Locus of back emf, E,

for constant power

Under
excited

Over
excited

1.0
power
factor

V

I

Xsr
(small) E

Equivalent circuit of HSUB motor

The phase current, I can be adjusted 
through E to give unity power factor
(V-curve of Current vs Excitation)



77

Attributes of the HSU-B Motor
• Allows high current density by directly cooling stationary 

armature and excitation windings.
• Strengthens “payoff” field in main gap by reducing fringing 

flux with strategically placed PMs, which combine with dc 
flux to produce high torque.

• Achieves direct field weakening and strengthening by flux 
control without danger of demagnetization.

• Delivers dc flux through air gap for brushless operation.
• Simplifies the power electronics drive to reduce its cost.
• Uses injected PMs magnetized in place to reduce 

manufacturing costs.
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HSU-B Prototype Motor
and Early Test Results

without injected PM
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Conceptual
Radial-Gap
HSU-B Motor
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HSU-B Superconducting Motor
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Field Weakening by Inverter Control

Voltage fed 3-phase 
bridge with 6 transistors, 
each having an anti-
parallel bypass diode, 
interfaced to the motor 
through a pair of anti-
parallel SCRs in each 
phase.

Developed by J. S. Lawler, UTK and J. M. Bailey, ORNL
patented by ORNL



2

Topology of the DMIC



3

Features of the DMIC
• Thyristors prevent the detrimental mixture of motoring and 

regeneration during high speed operation in motoring mode.
• Can drive a “low” inductance BDCM over a wide CPSR 

without exceeding the rated (base speed) rms motor current.
• Can drive a “high” inductance BDCM over a wide CPSR 

without exceeding the rated rms current. May expect up to 
50% more power at high speed.

• Can tolerate large changes in the dc supply voltage.  As the 
dc supply voltage decreases motor power is reduced but the 
rated rms motor current can be maintained.

• Can control both motoring and regenerative braking over 
the entire speed range.
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Features of the DMIC (continued)
• Each phase “idles” twice during one electrical cycle allowing 

position estimation schemes developed for conventional operation
below base speed to be extended to operation above base speed.  
May eliminate the need for an encoder.

• Motor current can be extinguished within 1/2 electrical cycle if the 
transistor inverter or dc supply system short circuits.

• Loss of semiconductor firing signals while motoring at high speed 
results in rapid extinction of motor current rather than deep 
regenerative braking.

• “Coasting” at high speed does not involve any stator copper losses 
since the motor current is cut off.

• Achieves functional equivalent of field weakening without 
supplementary field windings or exotic rotor/magnet configuration.
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Impact of Motor Inductance
on dc Supply Voltage and Peak Power

• Neglecting winding resistance the dc supply required to 
drive rated current into the motor at base speed without 
employing phase advance is ,     IL66E2V rmseqb2bdc Ω

π
+=

showing how larger inductance requires a greater dc supply
voltage to support rated conditions at base speed.

• Without considering motor current rating, the peak 
powers that can be developed by CPA and DMIC are, 
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Solution to a Problem
• Low inductance BDCMs are desirable 

because they require lower dc supply 
voltage and produce higher peak power.

• Low inductance motors are incompatible 
with the conventional phase advance 
method for high CPSR operation.

• The DMIC is a special inverter topology 
and control scheme that allows a low 
inductance BDCM to be driven over a 
wide CPSR.
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Conventional Phase Advance Inverter 
Topology and Motor Model
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Conventional
Phase Advance

Method
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Conventional Phase Advance
Firing Scheme
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Back emf and 
Phase Current

Flow in
Conventional

Phase Advance
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Detrimental 
Power Flow

during 
Conventional 

Phase 
Advance



12

DMIC Inverter Topology
and PM Motor Model
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Example Motor Parameters
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Phase Equations for a BDCM
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Analytical Solution
for the BDCM Phase Currents

With Ωb = base speed, n = relative speed = Ω/Ωb
and the change of variable, Θ = nΩbt

For current in three phases the equations are:

a a ab ab

b b cb cbb b

i i v e2 1d R 1 =  + 
i i 1 2 v ed n  L 3 n  Lθ
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For current in two phases the equation is:
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DMIC Firing Scheme - Phase A
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EMF Waveforms

Considering the phase transition where c is outgoing 
and a is incoming,
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Commutation Phase Currents
for 180o Dwell
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Two-phase Currents after 
Commutation for 180o Dwell
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Analytical Waveforms in one 60° Interval
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Third Cycle of DMIC Currents
and Back-emfs
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Full Cycle of DMIC Currents
and Back-emfs
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Average DC Link Power
for a dwell of 180o
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Average Power Delivered
by Outgoing Phase
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Peak and RMS Motor Current
for 180o Dwell
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vab = Vdc vcb = 0

Commutation Phase Currents
for 120o Dwell
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Two Phase Currents after 
Commutation for 120o Dwell
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Average DC Link Power
for a dwell of 120o
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Impact of Dwell Angle
on DMIC Performance
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Effect of Dwell on Performance
The impact of dwell on performance is:

• The current waveforms differ primarily in 
the commutation time.

• There is a dramatic difference in the average 
power developed by the motor, 29.6 kW for 
180o dwell compared to 21.3 kW for 120o

dwell.   Base speed power is 20.1 kW.
• The instantaneous supply power and the 

instantaneous power output of the motor 
have different wave shapes but have the same 
average value.
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Effect of Dwell on Performance 
(continued)

The dc link current has the same wave shape as the 
instantaneous supply power.

• For the 120o dwell case, the dc current drops 
to zero at the beginning of each commutation 
interval.  The incoming phase current is 
initially zero and the outgoing phase current 
is transferred from the dc supply to a 
circulating path through a bypass diode.  

• For the 180o dwell case the outgoing phase is 
left connected to the dc supply and the dc link 
current is much smoother.
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Average High-speed DC Link Power
for a dwell of 120o

2
3 2dc b

avg a a a
b

3V E 2 2 7 8P (n ) = 
L 3 3 9 81

π πθ θ θ
π π

 −→ ∞ − + − Ω  

This is the average power developed by a 180o dwell 
minus the power contributed by the outgoing phase.

Conclusion:
Although the current waveforms at infinite 
speed are identical for 120o and 180o dwells, the 
180o dwell delivers significantly more power.
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Neglecting Resistance, CPSR is Infinite
• Advance angle is defined with respect to the 

intersection of back-emf (i.e. eab) and Vdc.
• Commutation and conduction waveforms do not 

depend explicitly on Vdc.
• Shape of waveform depends solely on advance 

angle.
• Therefore, if motor produces rated power at 

rated current for a low speed (i.e. n=2) then it 
will exhibit the same performance at any higher 
speed.
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Effect of Dwell  and Speed on Commutation Angle, 
Peak Current, RMS Current, and Average Power
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Conclusions Regarding the DMIC
• Differential equations of the loss-less 

BDCM driven by the DMIC have been 
solved.

• Analysis shows no inherent limit to the 
constant power speed ratio of a BDCM 
when driven by the DMIC.

• Analytic expressions have been developed 
for the dependence of peak and rms 
current and average power on motor 
inductance and dc supply voltage.
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Dual Mode Inverter Controller, DMIC-1
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Rotor Assembly
(20-kW Axial-gap PM Motor)

Pre-closure Post-closure Jig removed
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Fan and Encoder Assembly
(20-kW axial-gap PM motor)

Fan view Cooling spider
and encoder
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Preliminary testing of DMIC Inverter 
and Motor in Test Cell 1
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DMIC-0 - Experimental and Simulated 
Performance of Lab Verification Test
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Results DMIC Testing at Half-speed
Motor current, torque and power v.s. speed
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Conclusions
• The DMIC can tolerate very large inductance and voltage 

variations.
– Allows motor designer to optimize his design based on machine 

concerns likely to lead to low inductance.
– Lower inductance decreases dc supply voltage requirements and 

increases peak power capability.
– Unnecessary to oversize the dc supply, the electric motor, the 

electronics, and the cooling system when using this technology.

• Coasting losses with the DMIC are solely the hysteresis 
and eddy current losses of the motor.  When CPA is used 
coasting losses may be an order of magnitude greater.

• The thyristors in the DMIC inverter protect against
– shorting the dc bus
– loss of the dc bus
– loss of firing signals.
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Simulated Effect of Variations in 
Parameters, Vdc and Leq, on DMIC
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Comparative Response  to Vdc Variations (1)
(Leq= 158 µH)

a. Equal current             b. Equal power
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Comparative Response to Vdc Variations (2)

a. Low inductance b. High inductance
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Motor Current and Power
Waveforms (58 hp operating at n=4)

a. Dual mode inverter b. Conventional phase              
control  (Irms=175A, Ipk=242A) advance control

(Irms=203A, Ipk=288A)
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Inverter Voltage and Current Waveforms 
(58 hp operating at n=4)

a. Dual mode b. Conventional phase 
inverter control advance control
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CPA Coasting Losses at n=4

a. Motor current and b. Inverter voltage and
power waveforms current waveforms
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Short Circuiting the DC Bus
(Motor Phase Current and Power Waveforms and

Inverter Voltage and Current Waveforms)

a. Dual mode b. Conventional phase 
inverter control advance control
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Open Circuiting the DC Bus
(Motor Phase Current and Power Waveforms and

Inverter Voltage and Current Waveforms)

a. Dual mode b. Conventional phase 
inverter control advance control
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Loss of Firing signals
(Motor Phase Current and Power Waveforms and

Inverter Voltage and Current Waveforms)

a. Dual mode b. Conventional phase 
inverter control advance control
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Example: Impact of Motor Inductance
on dc Supply and Peak Power

Example using DMIC Prototype:
• L=158 µH YVdc=199.0 V YPpk-CPA  = 72,861 W

Ppk-DMIC= 73,012 W

• L=211 µH YVdc=218.5 V YPpk-CPA  = 59,904 W
(+33.5%) (+9.8%) (-17.8%)

Ppk-DMIC= 60,028 W
(-17.8%)
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