"Integrating CUMULVSinto AV S/Express

Torsten Wilde, James A. Kohl and Raymond E. Flanery, Jr.
Oak Ridge National Laboratory 12

Keywords: Scientific Visualization, CUMULVS,
AV S/Express, Component-Based Design

Abstract. This paper discusses the development of a CUMULVS interface for
runtime data visualization using the AV S/Express commercial visualization
environment. The CUMULV S (Collaborative, User Migration, User Library for
Visualization and Steering) system, developed at Oak Ridge National
Laboratory, is an essential platform for interacting with high-performance
scientific simulation programs on-the-fly. It provides run-time visualization of
data while they are being computed, as well as coordinated computational
steering, application-directed checkpointing and fault recovery mechanisms,
and rudimentary model coupling functions. CUMULVS primarily consists of
two distinct but cooperative libraries - an application library and a viewer
library. The application library allows instrumentation of scientific simulations
to describe distributed data fields, and the viewer library interacts with this
application side to dynamically attach and then extract and assemble sequences
of data snapshots for use in front-end visualization tools. A development
strategy will be presented for integrating and using CUMULVS in
AV S/Express, including discussion of the various objects, modules, macros and
user interfaces.

1. Introduction

Scientific simulation continues to be a field replete with many challenges. Ever-
increasing computational power enables researchers to investigate and simulate more
and more complex problems on high-performance computers, to obtain results in a
fraction of the time or a a higher resolution. The data processed and created by these
simulations are huge and require much infrastructure to manipulate and evauate.
Scientific visualization and interactive analysis of complex data during runtime
provides a cost-effective means for exploring a wide range of input datasets and
physicad parameter variations, especialy if the smulation runs for days. It can save
time and money to discover that a simulation is heading in the wrong direction due to
an incorrect parameter value, or because a given model does not behave as expected.

1 Research supported by the Mathematics, Information and Computational Sciences Office,
Office of Advanced Scientific Computing research, U. S. Department of Energy, under
contract No. DE-AC05-000R22725 with UT-Battelle, LLC.

2 This research was supported in part by an appointment to the ORNL Postmasters Research
Participation Program which is sponsored by Oak Ridge National Laboratory and
administered jointly by Oak Ridge National Laboratory and by the Oak Ridge Institute for
Science and Education under contract numbers DE-AC05-840R21400 and DE-ACO05-
760R00033, respectively

A proper visudizdion environment alows scientists to view and explore the
esentia details of the smulated data set(s) [1]. For 2-dimensiona (2D) data sets, a
2D visudizaion environment is aufficient. But for 3-dimensiona (3D) problems, a
3D visudization environment is required to provide access to al the detailed
information embedded in the data set.

This paper describes work to integrate CUMULV S[2,3] into the AV S/Express[4]
viewer environment, which provides a framework for data visudization, including
both 2D and 3D capabilities. AV S/Expressis unique in the way that it alows changes
to the application structure and functionality during runtime. Applications are
constructed by “drag & drop” of modues from the component library. The user can
add and/or delete components dynamicdly, to change the application behavior on-the-
fly. This work is important in the sense that the integration of CUMULVS into
AV S/Expresswill enable the user to use runtime scientific data sets for visuaization
instead of file or static data sets.

2. Background

2.1. CUMULVS

CUMULVS (Collaborative, User Migration, User Library for Visualization and
Steering) [2,3] provides an essential platform for interading with running simulation
programs. With CUMULVS, a scientist can observe the internal state of a smulation
whileit is running via online visualization, and then can “close the loop” and redirect
the course of the smulation using computational steeing. These interadions are
redized using multiple independent front-end “viewer” programs that can
dynamically attach to, interact with and detach from a running simulation as needed.
Each scientist controls higher own viewer, and can examine the data field(s) of
choice from any desired perspedive and at any level of detail. A simulation program
need not always be connected to a CUMULV'S viewer; this proves espedally useful
for long-running applications that do not require nstant monitoring. Similarly,
viewer programs can disconned and re-attach to any of severa running simulation
programs. To maintain the exeaution of longrunning simulations on distributed
computational resources or clusters, CUMULV S a so includes an application-directed
chedpointing facility and a run-time service for automatic heterogeneous fault
reqvery.

CUMULV S fundamentally consists of two dstinct libraries that communicate with
each other (using PVM(5]) to pass information between application tasks and front-
end viewers. Together the two libraries manage dl aspeds of data movement,
including the dynamic attachment and detachment of viewers while the smulation
exeautes. The application or “user” library isinvoked from the smulation program to
handle the gplication side of the messaging protocols. A complementary “viewer”
library supports the viewer programs, via high-level functions for requesting and
recaving application datafields and handing steeing parameter updates.

The only requirement for interacting with a smulation wsing CUMULVS is that
the application must describe the nature of its data fields of interest, including their
decomposition (if any) acoss $mulation tasks executing in paralel. Using cals to

the user library, applications define the name, data type, dimensionality/size, locd
storage dlocation, and logicd global decompasition structure of the data fields, so
that CUMULV S can automatically extract data & requested by any attached front-end
viewers. Given an additional periodic cal to the stv_sendReadyData() service routine,
CUMULVS can transparently provide externa access to the changing state of a
computation. This library routine processes any incoming viewer messges or
requests, and coll ects and sends outgoing data frames to viewers.

This manual instrumentation of applicaion data can be dleviated by systems like
Dyninst [10] which do automatic run-time introspection of codes, however this type
of analysis is not sufficient to fully describe distributed data decompositions, some
user intervention is needed to spedfy the implied parallel semantics and the context of
the local data in the overall globa array. Unlike systems guch as DICE [11], where
whole copies of each data field are placed in a globally shared file structure using
DDD [12] and HDF [13], in CUMULVS the data movement is demand-driven and
the viewers dynamically extrad only regquested subregions of data fields from eadh
application task. This reduces the gplication overhead in most cases and provides
more flexible multi-viewer collaboration scenarios.

When a CUMULVS viewer attaches to a running applicaion, it does 9 by isaling
a “data field request,” that includes a seledion d desired data or “view” fields
(congtituting a “view field group”), a specific region of the computational domain to
be mllected (“view region”), and the frequency with which data “frames’ are to be
sent back to the viewer. CUMULVS handles the details of collecting the data
elements of the view region for ead view field. The view region baundaries are
specified in gobal array coordinates, and a“cdl size” is set for each axis of the data
domain, to determine the stride of elements to be ®llected for that axis, e.g. a &l
size of 2 will obtain every other data element. This feature provides more dficient
high-level overviews of larger regions by using orly a sampling of the data points,
while till alowing every data point to be collected in smaller regions where the
details are desired. CUMULV S has been integrated with parallel applications written
using PVM [5], MPI [14] and INDEPS [15] and can be gplied to applications with
other arbitrary communication substrates.

2.3. AVS/Express Visualization Environment

AV S/Expresd4] is a commercia environment for visualizing scientific data. It
provides the user with avisua programming interface ad includes gandard modules
for the most common visualizaion functions. Using AV S/Express the user can
develop a austom viewer by “drag & drop” of modules (objects) and connecting
together specific input and output ports of the objects (see Figure 1). This concept
enables users to create a visualization without the need for programming custom
code. Modulesin AV S/Expressrepresent single objed instances in an object oriented
programming language. They are the basic components of any AV S/Express program.
Modules can be grouped into macros in order to creae higher-level hierarchica
objeds. Maaos can be grouped with other maaos in order to create even higher-
order objeds. Ultimately, one macro could represent a complete gplication. Custom
module creation can be done for AV SExpressviathe following 4 steps:

Define parameters and values using AV S/Express primitive data types (e.g.
integer, real, string) or groups of primitive types and other structures.

Add methods (functions) for the module processing.

Define the type of execution for the module methods ~ the user code can be
compiled directly into the AV S/Express program or can be compiled as its
own distinct program.

Define execution events for module methods and method behavior.

The developer can specify which parameters are connected to which methods.
There are four possible options here:

notify: The method is called if the parameter va ue changes.
read: The method reads the parameter.
write: The method writes the parameter.

required (reg): The method can only be called if the parameter has avalid
value, as checked automatically before event processing.

AVS/Express - home/wilde/express cumulvs. Ol vl al

Fig. 1. AVS/Express application creation interface

AV SExpressincorporates a data driven or “Event based” exeaution paradigm. It
responds to events to exeaute diff erent sets of instructions depending on which event
occurs rather than following a pre-defined sequence of instructions. This means a
module method can only be exeauted if a specific parameter has changed. Usually this
principle is used where the program states are driven by the graphicd user interface
(GUI). Figure 2 shows the handling of function return codes in this paradigm. A
“hand shake” approach is used, where the cler recaves fealback regarding the
processng state of the event, such as error-success information. An event change in
Module A executes method XY. Because this event requires ome processng in

Module B, the method changes the output port of A. This change triggers the input
port of B (connected to the output port of A). Module B now reacts to this event by
executing method XYZ. After finishing the execution XYZ writes the gatus
information and/or return values to output port B. This changes the value of the
corresponding input port of A, triggering the execution of the method
check_return_code() which evaluates the return code and/or vaues and can inform
other modules, or the user, about the status of the event processing.

6. evaluate inputport e — -

input change | input port
|
Module (&) \ Module (B
- method X% | 3. reaction on input

- method 4. change Z.change |ehange (method XYZ)
checl_raturn_code ! 4. signal processing by
changing output

1. output output port

change | | == —————-4 output port

Fig. 2. Module Execution Paradigm Example

Modules can use this principle to verify if another module has been connected.
Thisisimportant for verifying the program state at al times, especially when dealing
with changing connections or new modules at runtime. AV SExpress alows multiple
modules to be connected to the same module port. The GUI aso can be dynamically
extended as the application changes.

3. CUMULVS I nterface Design for Integration into AV S/Express

The goal of this work was to integrate CUMULVS into AV S/Express in order to
enable runtime data visualization and to create an AVS/Express viewer for the
CUMULVS library. CUMULVS already supports several graphical viewers based on
AV S5[6], Tcl/TK[7], VTK[8] and the CAVE[9] environment. The AV S/Express work
isespecialy interesting because of its component-based functionality. It is a complete
viewer environment with components for everything needed to view scientific data,
e.g. reading, filtering, transforming and visualizing the data. AV S/Express provides a
dynamic application structure, e.g. viewers can be customized to an application on-
the-fly by adding or deleting components using the visua programming interface. By
adding new modules to the AV S/Express module library the user can improve and
extend the AV S/Express capabilities and construct custom viewers. The following
subsections describe the module structure and GUI for the CUMULV S AV S/Express
viewer.

3.1. CUMULVSModule Structure
The CUMULVS functionality is divided into global modules for the AV S/Express

viewer by analyzing program functionality paired with the required GUI blocks.
Figure 3 shows this global module structure including 4 primary macros.

The CUMULVS Main Macro handles all communication with the running
application and provides the GUI for specifying the application name and other global
parameters. It dso provides information about the connected application, like
available data fields for viewing, their bounds and data type, and whether the datais
particle-based or a mesh decomposition. Because of its central role, this module must
communicate with all other modules:

- Sends View Field (VF) information to VF Modules

- Get View Field Group (VFG) information from VFG Module for data collection

- Sends application connection statusto VFG Module

CUMULYS
Application

CUMULYS Communication

CUMULYS
--------------- - MAIN M o o m e e e,
1 Macra !
' |
1 + I
1 T , l
, v) v i
o N I, |
' |
| “F Macro (1) “F Macro {n-1) WF Macro (n) ——
' |
1 I
I LS x : |
! S 1 i !
1 r |
' | User |
| Interface |
b ¥
: hacro User :
\ Interface |
| VFG Macro (1) ——— | WFG Macro (n} Macro |
' |
1 I
1 A Fy |
e |
-
MVEIExpress
Visualization Macra
cumulvs to viewfield user interface collected data
~~® communication * communication sets
- viewfield to viewfield viewfield group to

- -

-------- »> group communication cumulvs communication

Fig. 3. main object structure

The VF Macro gets the VF information from the CUMULVS Main Macro and
provides the GUI for selecting one VF from the possible VFs for viewing. Every VF
requires one VF Macro, which stores al important information about the selected VF
and transfersit to the VFG Macro. One VF Macro can only be connected to one VFG
Macro, e.g. if the same VF is required for a second VFG, an additiona VF module
hasto be instantiated for thisVF.

The VFG Macro combines connected VF Macros into one VFG. The VFG Macro
calculates the global bounds and dimension from the connected VF values. For
example, the global lower boundary could be the highest VF lower boundary found in
the connected VFs and the globa upper boundary could be the lowest VF upper
boundary found. The VFG Macro provides base vaues for the User Interface (Ul)
Macro, which sets parameters like boundaries and cell size for each dimension,
visuaization frequency, etc. The Ul Macro checks al user input for errors before

sending it to the VFG Macro. When input is forwarded to the Main Modue, the data
collection is garted or appropriate changes to the data coll ecion are made.

In addition to data flow through the system, control parameters are also transferred
between macros. Initialy, only the Main Macro GUI is activated, but after succesul
connection to the gplication the VF Maao is then adivated. Activation happens by
setting a port connection to “true”’ (an integer vaue of 1).

The VFG Maao is adivated if at least one mnnected VF Macro has a valid VF
seledion. After the user conrects the VFG to the gplication, the VFG information is
sent to the Main Module together with the “conred” flag. Likewise if the user
chooses to disconned the VFG, the “disconned” flag is ent to the Main Module.
The mnnection status is transferred bad from the Main Module to the VFG Maao
and from there on to the VF Macro, and influences the GUI status of these modules.

3.2. Graphical User Interface (GUI) Structure

Because the user typicdly controls the CUMULV S-AV SExpress modules via the
visua interfaceit isvery important to designfor flexible use and efficient overview of
the vital information. The GUI consists of three main windows corresponding to the
three main maaos and their functiondity. The first window allows input of the
application name and is created from the Main Macro. A second View Field Info
(VFI) window is aso created by the Main Macro and provides a port for the VF
Macro. The VFG Maao credes athird User Interface (Ul) window. The structure of

these latter two windowsis $hown in Figure 4.

viewfield info window

viewfield info display

dimension frame (1)
(boundaries, cell size)

user interface window
dimension frame

dimension frame (n)

selection box for
viewfield (1)
(boundaries, cell size)
selection box for global vfg properties frame
viewfield (n)

Fig. 4. View Field Info and User Interface Window Structures

The VFI window displays important information abou the available VFs,
including name and boundaries for each dimension. Each instantiated and connected
VF Maao adds a “seledion box” for its VF to the VFI window. If the mnrection
from the VF Maao to the Main Maao o the VF Macro itself is deleted, the
corresponding “selection box” isalso deleted. The VFI window resizes automatically.

The Ul window consists of three frames, which are paositioned depending on the
order of their connedion to the window. This portion of the GUI enables the user to

change the parameters for the ollected VFG data set. The “apply/reset frame” allows
the user to apply the changes to the VFG or reset to previous values. The “dimension
frame’ sets the bourdaries and cell size for each dimension. This frame is constructed
modularly with one “dimension property frame” per dimension of the VFG, eg. for a
3 dmensonal VFG, 3 such frames are mnnected. The overall dimension frame is
resized automatically. The user can adapt this interface to dfferent problems
(applicaions) on the fly. All globa VFG parameters like visualization frequency can
be changed using the “global VFG properties frame”. Each frame has a well -defined
port conredion to its parent frame or window. It is therefore possible for users to
crede their own customized GUIs using the provided frames, or by creating new ones
implemented with the given input/output port connection specification.

X - XDress Mewer Olva|x lewfield Group - Vg macro#| Ol v/a|lx lewTield Group — Vi macro)
%] CUMULVS-AVS/Espress Viewer V0ah_[O w1 & | %] View(ieli G 3 vie il [EEEEY [E3] Viewfield Gr 3LV o[z =]
Applcatio Name: | cimple LU _resetvalies | {1 pimension: [
—_— .
| 1-pmension [1 2]
|} | R
4 1 L] Lower Boundary. Upper Boundary Coll sire:
e Ll e Evj‘; Boundary e I: er Bount - Gl size |‘ Iﬂﬂ 1
pite [1-80] [-50] i e ey é
E E [oo
2.Dimension: [, 1 2]
LT B e
1 L] Lower Boundary Upper Boundary Callsize
| Bl P
Lowier Boundary Upper Boundary Coll size | i ISﬂ L
1.viewfield density i d
—I 1 60 1 "
3.Dimension:
2viewfield| select vf ,
F0gISeN | 1 120
- |] P
Jviewfield plate < 4 Lowier Boundary Upper Boundary Cell size
Upper Bama oSt | 1 I‘Zﬂ 1
¢ - decomaoiton el - il
f - partce filc |z> |
i synch | attachidetach
i
i synch l attachidetach ||| f static
i stalic i saization frequency
1 visualzation frequency o tevdiize
| Fericiecdsize =
ON - no changes to VFG parameter are alloved

Fig. 5. Screenshot of the CUMULV S-AV S/Express | nterface

Figure 5 shows a sample snapshot of the GUI in action. The gplication name
window isin the upper left corner. The next window below that is the “View Field
Selection” window. Two data fields from the gplication are available for viewing;
“density” has 3 dmensions with bowndaries [1-60][1-60][1-120], and “plate” is 2
dimensiona with bourdaries [1-60][1-60]. There ae threeview fields attached. The
firgt two (“VF_macro”, “VF_maao#l”, see dso Figure 6) are connected to one view
field group (right interface window, “3d_vfg_macro”). The third view field builds its
own VFG (midde interface window, “3d_vfg_macro#1”). The VFG windows are
color-coded, with the VF_Macro name in the “View Field Selection” window colored
like the VFG to which it belongs. In addition, a spedd letter code describes the type
of the selected view field (“d” for mesh decomposition field and “p” for particle
field). The two VFG windows are composed of the three frames described in 3.2.
Values are initidlized using default VFG parameters. Any user inpu is validated
before changes are submitted to the VFG, after the “gpply changes’ button is pressed.

Because VF “plate” is two-dimensional in this example, the input for the third
dimensionis deadivated automatically in the corresponding Ul window (l€ft).

Figure 6 shows a 3D visualizaion of an example applicaion rendering from a
simple LaPlace simulation. Surface rendering was used to visudli ze the data set. The
inner surfacewas lid rendered and the outer surface in 6% transparent.

281

2.54
1.27
0.01

Fig. 6. Visualization of LaPlace Simulation

5. AVS/Express Concerns

During this development several problems with AVS/Express for Linux were
encountered. As a result, the CUMULVS viewer plug-in is currently ony available
for AVSExpress on SGI Irix systems. A crucia bug is related to the motif
environment, which causes random crashes of AV S/Express if menus or buttons are
aaccesed. AVS support verifies the problem, and there is an updated version of
Motif1.2 available for Linux glibc2.1. Unfortunately this update does not sean to
work for other glibc versions like glibc2.2. Also some stability problems were
encountered with the new AV SExpresss.l under Linux. The most stable overall
environment seemsto be Mandrake7.2, with the Motif update and AV S/Express.0.

The only know problem with AVS/Expresss.l under SGI Irix is that the user
interface input field “Ulfield” instantiates with a fixed field width independent of the
value set in the object (Figure 5, bottom right window, for visualizaion frequency).

As a developers note, it is important to point out that there is no clear order of
module instantiation and method execution if a mmplex saved program or macro is
instantiated. The order could in fad be opposite to the drag & drop program creation
order, and the order of connections is aso not guaranteeal. It is therefore possble to
introduce problems that are only visible during instantiation of the whole program,
and not during component testing. Feedback loops can occur invalving dfferent high-
level maaos. Also, setting the “reguired” flag (see Sed. 2.3) for an array doesn’t
ensure that al array values will be vaid. Missng values inside the array are not
detected by AVS/Express Thisis especially problematic for pointer arrays where the
acacessof an invalid pointer leads to program termination or critical failure.

6. Summary/Future Work

The integration of the CUMULVS functionality into AVS/Express enables
CUMULVS users to take advantage of the powerful component-based AV S/Express
viewer environment, and similarly AV S/Expressusers can collect and visualize data
from running pardlel/distributed scientific applicationsusing CUMULVS. The event-
based execution paradigm and the highly scalable modue approach make
AV SExpressvery flexible, but a a potentialy high cost in complexity for interna
module communication. The plug-in was tested using simple example gplications.
The next step will beto useit in red world appli cations. Future plans include solving
the problems with AVS under Linux, integrating a steering interface into the
CUMULVS plug-in and improving a rearanging the user interface based on user
feedback.

References
[1] K.J. Weller, “Topological Structures for Geometric Modeling”, Ph.D. thesis, Renssdag
Polytechnic Institute, Troy, NY, May 1986

[2] G.A. Geist, JA. Kohl, P.M. Papadopoulos, “CUMULVS: Providing Fault-Tolerance, Visualization
and Seering of Parallel Applications’, INTL Journa of High Performance Computing Applications,
Volume Il, Number 3, August 1997, pp. 224-236.

[3] JA. Kohl, P.M. Papadopoulos, “CUMULVS user guide, computational steering and interactive
visualization in distributed applications”, Oak Ridge National Laboratory, USA, Computer Science
and Mathematics Division, TM-13299, 02/1999.

[4] “AVSExpressDeveloper’s Reference”, Advanced Visual System Inc., Release 3.0, Junel996.

[5] G.A.Geigt, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, “ PVM: Paralld Virtual
Machine”, AUser' sGuideand Tutorial for Networked Parallel ComputingThe MIT Press, 199%4.

[6] “ AVSUser’s Guid” , Advanced Visua Systems, Inc., Waltham, MA, 1992,
[7 J.K. Ousterhout, “ Tcl and the Tk Toolkit” , Addison-Wesley, Realing, MA, 1994,

[8] Will Schroeder, Ken Martin, Bill Lorensen, “The Visuali zation Toolkit an objed-oriented approach
to 3D graphics’, 2™ Edition, Prentice Hall PTR, 1998

[9] CAVERNUSuser group, CAVE Research Network Users Society,
http://www.ncsa.ui uc.edu/\V R/cavernus

[10] DYNINST - An Application Program Interface (API) for Runtime Code Generation
http:// www.dyninst.org

[11] JA. Clarke, JJ. Hare, C.E. Schmitt, “Distributed Interactive Computing Environment (DICE)”,
Army Research Laboratory, Mgjor Shared Resource Center, http://frontier.arl.mil/clarke/dice.html

[12) JA. Clarke, JJ. Hare, C.E. Schmitt, “Dice Data Diredory (DDD)”, Army Reseach Laboratory,
Major Shared Resource Center, see http://frontier.arl.mil/clarke/Dd.html

[13] “Hierarchicd DataFormat (HDF)”, Nationa Center for Supercomputing Applications

[14] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, “MPI: The Complete Reference”, MIT
Press, Cambridge, MA, 1996

[15] R.Armstrong, P.Wyckoff, C.Yam, M.Bui-Pham, N.Brown, “Frame-Based Components for
Generalized Particle Methods’, High Performance Distributed Computing (HPDC '97), Portland,
OR, August 1997, http://glass-slipper.ca.sandia.gov/~rob/poet/

