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Previous work on trickle bed bioreactors 
led to parameter measurement including 
actual VOC solubility in biofilm

Two columnar trickle-bed biofilters 
used for removing sparingly soluble 

organic vapors from air

• Nutrient limitation & filter regeneration 

• Alkanes & chloroorganics

• Mass transfer & kinetics

• Predictive model/program
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• Understand and quantify how the presence of 
biomass affects solubilities of volatile organics

• Develop methods by which solubilities can be 
predicted given cell density (densities can be as 
high as 100 g dry weight L-1)

• Utilize information to more accurately predict 
operation of trickle bed bioreactors used for VOC 
degradation

• Extend results to other systems where solubility 
limits and partitioning play key roles (groundwater)

Goal
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• There are several ways to describe the solubility 
of a volatile organic in water.  Usually, the 
Henry’s law constant, H, is defined as

• A variety of H units are reported, the most 
common of which is atm/M

• Constants are strongly temperature dependent

Henry’s Law

Csolvent

CheadspaceH =
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Related Work
• Mackay and Shiu (1981) and many others have 

reported values for dilute organics in pure water 
including many environmentally important 
compounds 

• Octanol-air partition constants have been used as 
model systems to describe partitioning from a 
gaseous phase into a ‘biomass’ phase (Wania and 
Mackay, 1996)

• Chawla and McKay (2001) – measured effect of 
alcohol cosolvents on the aqueous solubility of TCE –
for some mixures water solubility increased by two 
orders of magnitude
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Davison et al., 2000 – Partitioning of propane 
in yeast and consortium biomass

Yeast Cells

Octanol/water
Consortium Biofilm

linear model for octanol
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Contaminants
• Benzene

• Toluene

• TCE (trichloroethylene)

• Chloromethane (a gas at room temperature, also 
known as methyl chloride)

These compounds are listed on DOE’s priority 
contaminant list
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Two types of measurements
• Solubility limit (how much benzene or TCE 

can go into an aqueous phase when that 
aqueous phase is in direct contact with pure 
benzene or pure TCE?)

• Partitioning of benzene/TCE between 
headspace (air) and liquid when no pure 
phase is present

Partitioning of benzene/TCE between 
the aqueous medium and the cellular 
mass itself

Contribution of cellular fractions
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Measurement of Parameters
• Serum-cap Test Tubes

• 27 mL Volume

• Biomass: whole cell yeast, 
lipids, proteins, 
polysaccharides, etc

• Benzene, toluene, TCE, 
chloromethane

• Solubility limit and Henry’s 
partitioning constant
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Analytical – GC/FID
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Biomass Production

• Model Biomass: Saccharomyces
cerevisae

• Grown and frozen prior to use
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Solubility Limits of Toluene and Benzene in 
Water Containing Biomass
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Biomass Content (dry g mL-1)
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Organic Content (dry g mL-1 for yeast)
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Henry’s law constants for TCE in 
yeast/water mixtures

Organic Content (g mL-1 for octanol; dry g mL-1 for yeast)
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Henry’s law constants for TCE, Chloromethane, and 
propane in octanol/water mixtures
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Cbiomass

CheadspaceIntrinsic Constant for 
Biomass

Hheadspace/biomass =

Cmixture

CheadspaceDefinition of Henry’s 
constant for a mixture Hheadspace/mixture =

Solvent-mass-based units (atm kg mol-1)

waterbiomasswaterwaterbiomassbiomassmixture mmHmmHH ++ += 111 m mbiomass water
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Implications for biofiltration
• Questions have been raised regarding high 

rates of removal for some biofiltration
systems -- rates reported are higher than 
solubilities of substrate in pure water would 
allow

• Existing predictive models usually use pure-
water partition values, or, at best, octanol-
water relationships to estimate solubilities
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Example of Model Profile Effects
Using ORNL predictive model for trickle-bed biofilter
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Summary
• Solubility limit

• limit of benzene in ‘aqueous’ phase increased by >2X
• limit of toluene increased by 4X
• limit of TCE increased by >100X

• Partitioning constant
• Benzene and toluene partitioning constant increased up to 

33X
• TCE partitioning constant increased more than 100X

• Contribution due mainly to the ‘insoluble’ biomass, and 
not extracellular material

• Have seen negligible effect on partitioning of 
chloromethane
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Ongoing Work
• Pure-substance effects:  starch, protein, lipid, etc.
• Contribution of cellular fractions; no additive 

relationship apparent
• Determine impact on various models

• Biofilter
• Groundwater
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