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Abstract. Previously, an explicit solution for the time evolution of the Wigner
function was presented in terms of auxiliary phase space coordinates which obey simple
equations of motion. These equations of motion are analogous with, but not identical
to, the classical equations of motion. They can be solved easily and their solutions
can be utilized to construct the time evolution of the Wigner function. The usefulness
of this explicit solution is demonstrated by solving a numerical example in which the
Wigner function has strong spatial and temporal variation as well as regions with
negative values. It is found that the explicit solution gives a correct description of the
time evolution of the Wigner function.

1 Invited talk presented at the Wigner Centennial Conference, Pecs, Hungary, July 8-12, 2002, to be
published in the Journal of Optics B: Quantum and Classical Optics, June 2003.
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1. Introduction

It is a great pleasure for me to participate in the Wigner Centennial Conference at Pecs,
Hungary in honor of the Centennial of Professor Fugene Wigner’s birthday. I first met
Professor Wigner in 1959 when I was an undergraduate student at Princeton. Professor
Wigner taught us and our graduate school classmates Curtis Callen, Stephen Adler,
and Alfred Goldhaber a course in Advanced Quantum Mechanics in 1961. We were at
the celebration party at the Graduate College when Professor Wigner was awarded the
Nobel Prize in Physics in 1963. After I obtained my Ph. D. degree at Princeton, I came
to work at Oak Ridge National Laboratory, for which Professor Wigner was the founding
Scientific Director. I saw Professor Wigner from time to time at Oak Ridge when he
came to work on his civil defense project. It is therefore particularly meaningful to
me to come and celebrate the Centennial in his native land to commemorate his many
important contributions.

As a part of the “Junior Paper” research project at Princeton University, I went
to see Professor Wigner in his office in Fine Hall in 1959 and inquired about the early
history of Quantum Mechanics. He told me that the great thing about Schrédinger was
that his wave equation was formulated in configuration space. However, to Professor
Wigner, who was trained as a chemical engineer, dynamics could also be described
in phase space. His formulation of quantum mechanics in phase space in 1932 led
to the well-known Wigner description of quantum systems [1]. The joint function
of coordinate and momentum f(rp) introduced in 1932, now known as the Wigner
function, is analogous with the classical distribution function. This analogy has provided
new insights and useful applications to many quantum systems. It is deservedly a subject
of intense interest in this Wigner Centennial Conference [2].

The Wigner function is, however, not identical to the classical distribution function.
The classical distribution function is always non-negative and can be described in terms
of a collection of cell points with positive weights in phase space. The evolution of
the classical distribution function can be followed by tracking these cell points using
classical equations of motion [3].

The Wigner function can assume negative as well as positive values in some regions
of phase space. How does a Wigner function with regions of negative values evolve as
a function of time? The concept of a probability distribution function with positive
weights is clearly not applicable here. The difficulty of propagating the Wigner function
with negative values has been a barrier to the study of the dynamics of the Wigner
function using the equation of motion of the Wigner function directly.

Previously, I formulated a simple method to propagate the Wigner function in time
[3]. The ability to propagate the Wigner function with negative values arises from
the fact that one deals with amplitudes in this method, and one does not need to use
the concept of probabilities. The method contains three important components. First,
one employs an auxiliary variable s, which is allowed to span the whole configuration
space. Second, using this auxiliary variable s, the Wigner function can be represented
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in terms of auxiliary phase space coordinates R and P. The equations of motion for
these auxiliary coordinates R and P are quite simple. They are analogous with, but
not identical to, the classical equations of motion, as 0P /Jt depends on the auxiliary
coordinate s. They can be solved easily and their solutions can be utilized to construct
the Wigner function at the next time step. The third component consists of providing
the correct amplitude function for the evolution. For each value of s and the evolution
of phase space coordinates, one associates an amplitude factor exp{is - (p — P)/h}.
After the amplitudes for all possible values of s have been obtained at the end of one
time step, one adds all these amplitudes together coherently (Huygen Principle) to give
the Wigner function f(rp) at the next time step. This explicit solution overcomes the
difficulty of propagating a Wigner function with negative values.

Recently, with the rapid advances in quantum information technology and the
reduction in the size of micro-electronic devices, there has been renewed interest in
experimental and theoretical studies of the Wigner function [4]-[15]. Experimental
measurements of the Wigner function have been carried out using many different
techniques [4]-[9]. Regions of negative Wigner function were observed in many
experiments [5, 8]. The time evolution of the Wigner function has been studied by many
authors [10]-[15]. It is instructive to review the explicit solution for the time evolution
of the Wigner function obtained previously and to demonstrate its usefulness by a
numerical example. We choose to examine an example in which the time evolution of the
Wigner function can be ready evaluated by using wave functions and eigenvalues. The
Wigner function in the example should have significant spatial and temporal variations
as well as regions of negative values to test whether the explicit solution obtained
previously is capable of treating these non-classical features. The success in providing a
correct time evolution of the Wigner function using this explicit solution will pave the
way for its applications in the future.

2. Explicit Solution of the Time Evolution of the Wigner Function

We shall first review the explicit solution obtained in 1982 [3]. We consider a particle
in the potential V'

PRI LR T )
1 815 ra - 2m (r7 ¢ r? .
The Wigner function is

frp,t) = [ dsePmpr = 2 00 (r 42, 1), @)

From the Schrodinger equation, we obtain the equation of motion for the Wigner
function [1]

df (rp,t)

h
r +%.vrf(rp,@_Esm{gvy-v;j}wr,t)f(rp,t) —0, (3)

h

where VY acts on the potential V' and Vg acts on the Wigner function f.
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Given the Wigner function f(ropy,to) at time to, we wish to obtain the Wigner
function at the next time step at t = tq + 0t with a small d¢. To solve for the dynamics,
we divide the phase space into cells. Consider one such cell centered at {ry, p,} at
time ¢, with volume element drodp, and amplitude f(ropy,to). We retain the auxiliary
coordinate s and follow the time dependence of each cell in the Lagrangian sense. For
the phase space coordinates {r¢p,} initially at time t;, we label their phase space
coordinates at subsequent time ¢ by {R(rop,s,t) P(ropys,t)}. In classical dynamics,
the evolution of the phase space coordinates will not depend on s. In quantum dynamics,
they will depend on s. The momentum coordinate P can jump to the momentum
coordinate p at time . We associate an amplitude of exp{is - [p — P(r¢p,s,t)|/h}
for this momentum jump. This amplitude factor is chosen because for the classical
case where P is independent of s this amplitude leads to the correct delta function
propagator d(p — P(ropo,t)) after we integrate over s [see Eq. (14)]. We therefore
express the Wigner function f(rp,t) at the next time step as
f(rp,t) = /% exp{is - [p — P(ropys,t)|/h}o[r — R(ropys,t)| f(ropy, to).  (4)
Our task is to find solutions for the phase space coordinates R(ropys,t) and P(rop,s,t)
with initial conditions R(r¢pys,ty) = ro and P(rgpys,ty) = p,- If we can find these
coordinates at the next time step, the above integral can then be carried out to give the
Wigner function at the new time .

To obtain the equations of motion for R(rgop,s,t) and P(rop,s,t), we substitute
Eq. (4) into Eq. (3). For the first term in Eq. (3), we get

of (rp,t) drodp,ds
o /Wf("“opmto)
|52 O xplia Ip - Plrupys, /1)l ~ Rirupys. )

+exp{is - [p — P(ropys,t)]/h}(V go[r — R(ropys,t)]) - OR(ropys,t)/0t|.(5)

Noting that

V Ro[r — R(ropys,t)]) = —Vré[r — R(ropys, t)]), (6)
we can rewrite the second term inside the square bracket as
drodpyds
—_— t
/ (2mwh)3 J(ropo; to)

< explis - [p — P(ropys, )]/}~ Vrolr — R{ropys, 1)) - OR(ropgs, t)/01
B OR(ropys,t)

= Vrf(rp,t), (7)

where we have used Eq. (4) to obtain the right-hand side. For the last term in Eq. (3),
we substitute (4) into this term and find

2 . h % f 1 drodpods
- sin {ivr -Vp} V(r,t)f(rp,t) = ﬁ/Wf(TopoJo)

< explis - [p — P(ropys, 1]/R}dlr — Riropys, )T — 20 = Vr+5,0]
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Putting Egs. (5)-(8) into Eq. (3), we obtain

OR
AL

drodp,ds (—is) OP [V(r—35.t)—V(r+2,1)]
/ “2rnyr ! ToPos o) [T o in
x exp{is - [p — P(ropys, t)]/I}o[r — R(ropys, )] = 0. (9)

By comparing similar terms, the above equation leads to the equations of motion for R
and P [3],

OR p
ot m’ (10)
OP s s

Note that because of the d-function §(r — R) in Eq. (4), » and R are interchangeable
in the above equations.
Equation (4) combined with the equations of motion (10) and (11) gives an explicit
and exact solution of the time evolution of the Wigner function [3]. To apply it to the
evolution of the Wigner function, one starts at an initial time ¢y and divides the phase
space into cells with phase space coordinates ry and p, with amplitude f(rq, p,). One
samples the space of the coordinate s. For a value of s, one solves the equations of motion
(10) and (11) for R(ropys,t) and P(ropys,t) with initial conditions R(rop,s,ty) = 7o
and P(ropys,to) = p,- The equation of motion for R is the same as the classical
equation of motion. The equation of motion for P coincides with the classical equation
of motion for small s but differs from the classical equation when s is large. The latter
difference distinguishes a quantum system from a classical system.
To describe quantum mechanics properly, Eq. (4) stipulates that one associates an
amplitude factor exp{is - (p — P)/h} with each value of s. After the amplitudes for all
possible values of s have been obtained at the next time step, one adds these amplitudes
together coherently, as given in the righthand side of Eq. (4). The resultant amplitude
gives the Wigner function at the next time step. This coherent sum gives the correct
phase and sign of the Wigner function in different regions of phase space. Carrying
out this procedure repeatedly allows one to evolve the Wigner function forward in time
step by step, and the difficulty of propagating a Wigner function with negative values
is overcome.
We note in passing that in the limit of 7 — 0 the dominant contributions in Eq.
(4) come from regions of small s as large s leads to highly oscillatory contributions with
an average contribution of zero. With contributions coming only from small values of
s, Egs. (10) and (11) approaches the classical equations of motion
R _p (12)
at  m

and
oP

— = —VaV(R1). (13)
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The function P(rop,s,t) is then independent of s, and Eq. (4) gives

f(rpa t) - /drodpoé["“ - R(T0p07 t)]é[p - P(T0p07 t)]f(ropm tO)? (14)

which is the solution of the evolution of the classical distribution function, as expected.

3. Implementation of the Explicit Solution

The explicit solution of Eqgs. (4), (10) and (11) given in the previous section allows one
to propagate the Wigner function from one time to another. One considers a small time
increment 0t =t — to, and solves Egs. (10) and (11). One obtains

r = R(ropys,t) =ro+ %&. (15)

and
V(r—51)-V(r+5z1)

P=p,+e, 8t, (16)

where e; is the unit vector in the s direction. After r(R) and P for different s have
been obtained, we can substitute them in Eq. (4) and carry out the integration to give
the new Wigner function at the next time step. Egs. (15) and (16) lead to

frp) = famn, | o [ (B - (vie - S0 v+ ) T
x6(r — g = 251 f (70, Pos o). a7

The integration over ry can be easily carried out, and the above equation becomes

f(rp,1) /deQ/ 27rh [ '(ph_p())—<V(T—§,t)—V(r+g,t)> %1

<= Lot py o). (18)
This explicit solution of the time evolution of the Wigner function can be written as
b
$rp.t) = [ dpy{ Futr.p = o) + Fur.p = p) [ £ = 2t i to) (19

where F,(r,p — p,) and Fy(r,p — p,) are cosine and sine transforms given by

F.(r,p—py) = 2/ 27rh) oS [@] COSKV(T - g,t) —V(r+ g,t))%} (20)
and

Fy(r,p— p,) = 2/000 (2:5‘;)3 sin l@] sinKV(r - g,t) —V(r+ g,@%} (21)

The above set of equations (19)-(21) provide a simple implementation of the explicit

solution (4), (11), and (10) of the time evolution of the Wigner function. Using these
results one can propagate the Wigner function forward in time to describe the quantum
dynamics of the system.
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If one keeps only terms up to first order in 6t for small values of dt, the Wigner
function evolution equation becomes

$rp.0) = fir = Zitpot) + 5 [ R p =S = Botpot. (2)
where
Vi(r,p—p,) = 2/0Oo (2;‘5;)3 sin [ (ph pO)l {V(r ——t)=V(r+ —,t)} (23)

4. An Example of the Evolution of the Wigner Function

It is of interest to consider an explicit example to test whether the solutions in Eqs. (19)-
(21) or (22)-(23) leads to the correct results. For this purpose we study the dynamics
of the Wigner function for a case that can be easily evaluated and compared with the
Wigner function obtained by using the explicit solution.

We examine a particle in a one-dimensional attractive Gaussian potential well. We
express physical quantities in dimensionless units, with a Schrodinger equation given by

1 d?

HU(z) = {_5@ - e_x2/2”2} U(z). (24)

The wave function W(x) can be expanded in terms of a set of non-orthogonal Gaussian
wave functions with different widths,

T'max

U(z) =) anthn(2), (25)

n=1
where the normalized basis function (x|n) = 1, () is taken to be
€_m2/2/81%

(V7)1

and (2 = nB3. The Hamiltonian matrix in this basis set can be easily constructed.

Yn(z) = (26)

Specifically, one calculates the matrix element of the overlap matrix B for this set of

2 n~m
Bom = (n|m) = ‘/626 662’ (27)

the matrix element of the kinetic energy matrix T'

basis states

1 d? 1 | 26,.06m 1
Tom = —_ = - , 2
o) =3 5 i 2%)
and the matrix element for potential energy matrix V
- 2003 02
_ z2 /202 o nMm
Vom = (n|(—e / )|m) = \lﬁz + 32 + o2’ (29)
where
2 32

32452
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The eigenvalue equation becomes
(T'+ V)a = EBa, (31)

where a is the column matrix of the coefficients {a,} of Eq. (25). This eigenvalue
equation can be diagonalized to yield the eigenenergies E) and eigenfunctions ¥, (z)
represented by the set of coefficients {ay,}. We normalize ¥, (z) by [ dz|¥x(x)* = 1.

A simple non-stationary state ®(z) of the system can be constructed as a linear
combination of the eigenstates W (z) with amplitudes by,

O(x,t = 0) ZbeIfA (32)

The time dependence of this non-stationary system is

Oz, t) =D bre "M, (2). (33)
A
The Wigner function of the system is then given by
f(xp,t Z cn(t)Ch (1) from (D), (34)
where
t) = Z b)\e_iEAtCL)\n, (35)
A
| 2600m_ -
2 2 _
25252
and
80 1 1 :
m = 4—"-"" — . 38
o = e | \am T am) T )

In our numerical example, we study the dynamics of a system in a potential with a
width parameter o = 3. The two lowest energy even-parity eigenstates Wo(z) and ¥, (z)
have eigenvalues Fy = —0.844 and E; = —0.312 respectively. As a test, we construct a
non-stationary wave function with equal amplitudes in these two eigenstates at t = 0,

1
O(z,t =0) = ﬁ{\lfo(x) + Uy (2)}. (39)
The time dependence of the wave function is then

O(z,t) = “HEy o (2) + e (7). (40)

vl
The time dependence of the Wigner function can be evaluated using Eq. (34). The
Wigner functions for different values of p and ¢ are shown in Figs. (1a), (1b), and
(1c) on the left panel of Fig. 1. The Wigner function has both positive and negative
values in different regions of phase space. The eigenfunctions and eigenvalues give a
correct representation of the Wigner function as it depends only on the accuracy of the
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Eigenfunction Solution| —— =0.0 | Explicit Solution
2 0 r e e e e o R t=0.6 T T 7]
O _ -—= =12 Np—p]
_(a)p 0 R (@)p 0:
~ 1.0+t r—— t=24 -
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S 0.0 »6:\\ AES |~ :///'N;——ﬁ;\' Mg
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S(x,p)

Sfx,p)

Figure 1. Time dependence of the Wigner function obtained in two different
methods. The left panel gives the Wigner function obtained from the eigenvalues
and eigenfunctions, and the right panel shows that Wigner function obtained by the
explicit solution of Eqs. (19)-(21).

eigenvalues and eigenfunctions, and not on the accuracy of the method of propagating
forward in time.

The non-stationary state we have used leads to an initial Wigner function with
significant spatial and temporal variation as well as regions of negative values. These
properties provide a stringent test of the methods of using Eqs. (19)-(21) or Eqgs. (22)-
(23) to propagate the Wigner function.

For our tests we take the initial Wigner function for our non-stationary state Eq.
(39) at time ¢ = 0, and evolve the Wigner function using the explicit solution. In Egs.
(20) and (21), the factor of (2%)? in the denominator (for a three-dimensional system)
is replaced by 27h for this one-dimensional example.

We carry out the time evolution using small time increments. One can choose either
Egs. (19)-(21) or Egs. (22)-(23) to evolve the Wigner function. The former includes
higher order effects in 6t, and can be used with a larger time increment than the second
approach. We choose to use Egs. (19)-(21), and the results in Fig. 1 from ¢ = 0 to
t = 3.0 were calculated using 30 time steps. The cosine and sine transforms can be
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calculated using the method of fast Fourier transforms. The numerical integration over
po in Eq. (19) can then be carried out to yield the Wigner function at the next time
step. This process is repeated in a stepwise manner to propagate forward in time. The
resulting time evolution of the Wigner function is shown in Figs. (1a’), (1b’), and (1¢’)
on the right panel of Fig. 1.

A comparison of the left and the right panels indicates that the explicit solution
of Egs. (19)-(21) gives an excellent reproduction of the time evolution of the Wigner
function obtained by using eigenvalues and eigenfunctions. The phases and the negative
regions of the Wigner function are correctly reproduced. The difference between the
eigenfunction solution and the explicit solution is small. For example, for p = 0.6 at
t = 3, the maximum value of the eigenfunction solution of the Wigner function is 0.9313
at x = 1.692, and the explicit solution gives 0.9206 at x = 1.692. For this momentum
p and t = 3, the minimum of the eigenfunction solution of the Wigner function is -
0.3888 at x = —1.1667, and the the explicit solution gives -0.3735 at + = —1.1667.
The positions of the maxima and minima in the two methods are the same, and the
magnitudes differ by about 1%. The explicit solution of Egs. (19)-(21) thus leads to an
accurate determination of the time evolution of the Wigner function, even if it contains
regions of negative or oscillating values.

5. Conclusions

We have reviewed and applied here the explicit solution of the time evolution of the
Wigner function obtained previously in 1982 [3]. The basic idea is to represent the
Wigner function in terms of auxiliary phase space coordinates, which obey simple
equations of motion. These equations are similar to the classical equations of motion, but
have important differences. They can be solved easily. The solutions of these equations
of motion can then be used to evaluate the time evolution of the Wigner function. We
have demonstrated the usefulness of the explicit solution using a numerical example. We
find that the explicit solution leads to the correct time evolution of the Wigner function,
even for a Wigner function with strong spatial and temporal variations and regions of
negative values.

In the final form of Egs. (19)-(21) or (22)-(23), the results for the time evolution
of the Wigner function is quite simple. This simplicity will facilitate its application
to problems involving quantum dynamics in phase space. The explicit solution can be
applied to study particle dynamics in a time-dependent, multi-dimensional potential. It
can also be applied to study the one-body Wigner function of a many-particle system in
a time-dependent mean-field potential, as in [3]. With the addition of a collision term,
it can be used to describe the dynamics of a quantum Boltzmann equation involving a
Wigner function with positive and negative regions in phase space. Future research in
these directions will allow us to explore further the richness of quantum dynamics in
phase space, which Professor Wigner first opened for us.
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