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 Abstract. When an atomic or molecular system is perturbed slowly in the time scale 

defined by its characteristic frequencies, it experiences nearly adiabatic change, both adapting 

its internal motion and performing weak inelastic transitions. Quantum-mechanical methods 

for the treatment of the transition dynamics of nearly-adiabatic systems are reviewed. Models 

for nearly-adiabatic transitions, united under the generalized hidden crossings theory, bring up 

a physically transparent picture of the processes in a wide energy range. These are applied to a 

variety of ion-atom and ion-molecule collisions. The role of adiabatic atomic physics in the 

fully quantum description of electron transport through molecular electronic devices as well 

as in the theoretical simulation of the self assembled molecular monolayers are also briefly 

reviewed. 

 
1. METHODS FOR SOLVING SCHRÖDINGER EQUATION 
 
Recent novelties in atomic physics such as Bose-Einstein condensation and cold collisions are 

prominent examples of nearly-adiabatic atomic systems. Still, the newest developments of 

divertors in fusion tokamaks, recordings of interstellar spectra that may give clues for 

evolution of the early universe, and increased demands for the precise plasma etching in the 

semiconductor based electronics have made modelers of fusion, astrophysical and technical 

plasmas the most active consumers of slow collision data. Due to difficulties in their 

production, these have been persistently sparse which makes nearly-adiabatic collision 

physics one of the most needed activities in traditional atomic physics. 
A typical binary collision of heavy particles is characterized by the internuclear distance 

vector R
r

 as well as a set of electronic coordinates }{rr . If the motion of nuclei is assumed 

along a classical path, )(tRR
rr

= , obtained by solution of classical equations of motion in the 

interparticle potential, then the Schrödinger equation of the system is reduced to a time 



 

 

dependent partial differential equation for the electron dynamics (atomic units are used 

throughout) 

                                                         ( , )el
di H r R
dt

Ψ = Ψ
rr

                                                        (1) 

 

where ( , )elH r R
rr  is the electronic Hamiltonian, which defines the adiabatic eigenstates of the 

problem 

                                                    ( , ) ( , ) ( ) ( , )el n n nH r R r R E R r RΦ = Φ                                      (2) 
 

The adiabatic eigenfunctions, ( , )n r RΦ , describe the motion of the electron(s) for a fixed 

value of the vector R
r

. In what follows and, without loss of generality, we will consider only 

the transition dynamics caused by the radial motion of the nuclei, assuming that R is a scalar 

variable. Transitions between electronic states are caused by the time-dependence of R
r

(t). 

For center-of-mass collision energies of the order of eV or less, the size of the wavelength of 

nuclear motion, / Rh Mv , becomes of the order of the characteristic collision length and 

dimensions of the system, where dtdRvR /=  is the internuclear radial velocity and M is the 

reduced mass of the system. The classical prescription for the nuclear motion is not good 

anymore and the problem must be described by the full, time-independent Schrödinger 

equation for both the electronic and nuclear motions, Ψ=Ψ EH , coupled through the 

common electronic-internuclear potential, where H is the total Hamiltonian of the system.  

 The adiabatic eigenfunctions, ( , )n r RΦ , are good representations of the states of the 

electron(s) as long as the relative nuclear motion R(t) is much slower than the electronic 

motion. According to the adiabatic theorem [1], endoergic transitions are not possible in the 

strict adiabatic limit, 0=Rv . Besides, the adiabatic terms, )(REn , of a Hermitian 

Hamiltonian never cross [1]. Intuitively, the tunneling mechanism, localized to the vicinity of 

the closest approach of the terms (so called avoided crossings) will dominate the transitions 

when Rv  is small.. This localization justifies the treatment of electronic transitions in a pair 

wise fashion (between two adjacent adiabatic states at a time), which is the main motivation 

for using two-state approximations in localized ranges of R.  

Many general features of the collision dynamics can be understood by modeling a 

collision system by two (diabatic) states only, with matrix elements of the Hamiltonian. 



 

 

satisfying 22 11 12( ) ( ), ( ) 0H R H R H R→ ∞ > → ∞ → ∞ → . Diagonalization of this Hamiltonian 

yields adiabatic energy terms E2,1(R) 
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Although E2,1(R) do not cross for real R, these still can cross for complex R, at R=Rc, Rc

*, 

(where electronic Hamiltonian is not Hermitian) 

                                                )(2)()( 122211 RHiRHRH ±=−                                                 (4) 
 
The crossings of adiabatic energy terms for complex Rc�s are known as hidden crossings [3]. 

Linearization of H12 in the vicinity of Rc (and Rc
*) yields 

                                                    
2,1

* * *
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∆ ≈ = −
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                                                (5) 

 
indicating that the energy terms have square-root branch singularities at Rc and Rc

*. Thus, if 

the Hamiltonian is an analytical function of R, the hidden crossings are the only additional 

singularities of the eigenenergy and these are branch points of the square-root type [3]. The 

adiabatic eigenenergy for the complex R is a single, multi-valued function, containing two (in 

this case) Riemann sheets, which coalesce at the branch point, and coincide with adiabatic 

terms along the Re{R} axis. Of course, a collision system evolves along this axis. Still, one 

can choose to deform the path in the complex R. Thus, starting from real R at state |1>, 

encircling a branch point and returning to the real R axis, the system is �switched� to another 

Riemann sheet, i.e. promoted to the state |2>. Remarkably, the quasi-elastic evolution of the 

system in the complex R-plane may lead to an inelastic transition.  
Since the complex �evolution path� can be deformed from real R axis, infinitesimally 

close to Re{Rc}, to encircle Rc in the direction of the Im{R} axis, it follows that the transition 

region is infinitesimally narrow around Re{Rc}. We show that this counter-intuitive statement 

is, strictly speaking, valid only in the adiabatic limit, 0→Rv . By linearization of Hi,j(R) in 

the vicinity of Rc and Rc
* , the matrix element of the nonadiabatic coupling, 

>ΦΦ=< 212,1 |/|)( dRdRU  takes the form 
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which reduces to a Lorentzian form along the real R axis  

                                            2,1 2 2

Im{ }1( )
2 ( Re{ }) (Im{ })

c

c c

RU R
R R R

=
− +                                        (7) 

 
Thus, U2,1(R) exhibits a peak along real axis at R=Re{Rc} whose width is proportional 

to Im{Rc}. On the other hand, by expanding the total electronic wave function into adiabatic 

eigenstates one obtains the Molecular Orbital Close Coupling (MOCC) equations, which in 

the time-dependent representation read as 

                , ,
0

exp( ' )
t

n
R k n k n k

k

dA v A U i dt E
dt

= − ∆∑ ∫ ,     inntt
inn StAA ,, )(lim,lim ==

∞→−∞→
δ                    (8) 

 
The Sn,i is the S-matrix element for the transition from |i> to |n>. Similarly, one could expand 

the wave function in the diabatic basis, which would yield the exponent of the phase factor in 

the coupled equations in form ∫ −= RvdRHHi /)( 22111,2ϕ . By linearization, 

11 22 ( )ACH H G R R− = − , where Re{ }AC CR R= , (which, together with the assumption 

constRRH AC =≈ )(12  constitutes the famous Landau-Zener (LZ) model, [2]), and from the 

requirement 112 ≈ϕ  a range R∆  in R around Re{Rc} follows where the fast oscillating phase 

(for 0→Rv ) is not suppressing the transition 

                                             
1/ 21/ 2
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  ∆ =    ∆    
                                          (9) 

 
This range becomes infinitesimally narrow in the limit 0→Rv , i.e. the transitions become 

perfectly localized in the adiabatic limit.  

 When considering nonadiabatic transitions in the adiabatic limit, it is often assumed that 

the Landau-Zener like avoided crossing of adiabatic terms (or crossings of the diabatic ones) 

is the only mechanism that produces the transitions. In fact, LZ avoided crossings can be 

associated to the hidden crossings of very small imaginary part, and are a consequence of 

accidental resonances of the states in the two atomic potential wells, separated by a moving 

barrier, below the top of the barrier, Fig. 1a). The mechanism of LZ transitions is tunneling 

through the barrier between the quasi-resonant states. On the other hand, hidden crossings are 

associated with the top of the potential barrier. While the system evolves from the separated 



 

 

atom limit, the electron is localized at one well, on a given side of the barrier, Fig. 1b). Thus, 

the electron wave function is atomic in character. The top of barrier decreases as the particles 

approach and at some R it is low enough for the electron in a particular state to move over the 

top of the barrier. From that moment on the electron is shared between the two wells, and the 

electron wave function becomes molecular in character. For those R values where the electron 

wave function suddenly changes the character, its derivative (with respect to R) maximizes, 

and the radial nonadiabatic matrix elements have peaks. These peaks are signatures of poles 

of U2,1(R) for complex R, as well as of branch points of the adiabatic eigenfunctions and 

eigenenergies. Because the wave function adapts to the change of a particular state of the 

electron, the hidden crossings appear in series, localized at almost the same values of R [3]. 

Since, during the course of collision, one state after another changes the character, the hidden 

crossings associated with a particular potential barrier appear in superseries.  

 On the real adiabatic term diagram, the hidden crossings are not necessarily seen as 

avoided crossings, and localization of the transitions around Re{Rc} is due to maxima in 

nonadiabatic coupling matrix elements. 
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artificially add velocity dependent terms to the Hamiltonian. Still, the choice of the ETF 

factors is not unique for a given problem and solutions of the MOCC equations may vary, 

depending on this choice. Another possibility is to use the HC nonadiabatic matrix elements, 

Eq. (7). These do not have any of the deficiencies of a regular MOCC, but are strictly valid 

only in the adiabatic limit, where localization of the transitions justifies the linearization used 

for their derivation. This approach is called MOCC HC [4,5]. 

 A new mechanism has been found recently [4] that might dominate the transitions in the 

adiabatic limit, over the hidden crossings and Landau-Zener transitions. This is associated to 

the abrupt change of the wave function at the turning point, which is dominant for small 

impact parameters, b. This can be seen from the MOCC equations, Eq. (8), where the 

couplings are proportional with the radial velocity, vR, which has additional branch points, not 

present in the adiabatic energy. For example, in the simplest case of a straight line trajectory, 

2 2 2R v t b= + , the radial velocity 2 /Rv v t R=  has branch points along the imaginary axis, at 

/t ib v= ± . If these branch points are also taken into account in the two-state modeling of 

nearly-adiabatic transitions, the total S matrix for transition in the two-state case is 

2,1 2,1 2,1
HC TPS S S= + , i.e. a coherent sum of the HC contributions and the turning point (TP) 

contributions, where  

 

and K1 is the modified Bessel function of the second kind [4]. Having in mind the asym

form of this function for large and small values of the argument, we get that t

contribution define the transitions inside a radius b defined by 

 
The transition probability is proportional to v2 for small λ, and to exp(-λ) for large λ, i

very sensitive to the value of the impact parameter b. The leading term of the TP contr

in an expansion of the cross section in powers of v is 

The polynomial rather than exponential decrease of the cross section in the adiabatic

proportional to v4, is a remarkable result because TP contributions dominate ov
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exponentially decreasing hidden crossings and LZ transitions in the adiabatic limit. This 

conclusion is valid as long as 0)0(1,2 ≠=RU . Since this is not a case for nuclear symmetric 

collision systems, the next term (proportional to the second derivative of U2,1(R=0)) gives a 

contribution to the cross section proportional to v8. Although these conclusions are strictly 

valid only for a straight line trajectory approximation, the polynomial decrease of the cross 

section stays valid for more sophisticated trajectories [4], changing only the leading power of 

v. The two-state system and the straight-line trajectory have served here only as simple 

illustrations. The obtained conclusions are valid for all Hamiltonians that are meromorphic 

functions of R. A general method that takes into account all TP, HC and LZ transitions, can 

be devised based on the MOCC equations (in both the time-dependent and the time-

independent approach) with the modified noadiabatic coupling matrix elements, written in the 

form 

 

where )(, RU HC
ji  are in the Lorentzian form, Eq. (7), for a two adiabatic states i,j coupled with 

a hidden crossing, and )0(, jiU  is the exact value of the nonadiabatic coupling at R=0, 

obtained numerically. This method (MOCC HC+TP) yields excellent results in all test cases, 

in comparison with �exact� results (i.e. with a direct solution of Schrödinger equation on 

numerical lattice, LTDSE) and experiments, as is shown in the next section. 

 

2. TESTS AND DATA 

 
 As a convenient test of the adiabatic theory in the previous Section we take a 1D case of 

two colliding harmonic oscillators, defined by the potential [6] 

where 222 btvR += is modeled with a nonzero impact parameter to make a closer a

with the 3D case. As can be seen in Fig. 2, this case contains a moving potential barrie

a change of he character of the wave function across it. Thus, one can expect a 

crossings series [4] close to the barrier (Fig. 2b), divided in two groups, due to the

symmetry of the system. 
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In Fig. 3a) we present a comparison of the transition probability for a small value of the 

velocity, v=0.2 a.u., as a function of the impact parameter. At small impact parameters the TP 
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Fig. 2 a) Potential and the ground state electronic wave function of the double harmonic oscillator at 

small (upper figure) and large (lower figure) internuclear distance and, b) Hidden crossings between 

even (left) and odd (right) states. The dashed line is the top of the potential barrier [4].  
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Fig. 3 a) Excitation probability from the n=0 to n=2 state as a function of impact parameter for v=0.2 

a.u.; b) Cross sections for 0-2 and 0-4 excitations as functions of 1/v; c) Cross section for 0-2 

)

a) 
 

excitation for various internuclear potentials [4]; dashed line is the HC theory. 
b



 

 

contribution is by far larger than the HC one. Still, if TP and HC contributions are both taken 

into account, the total transition probability agrees with the exact result [4]. Similar 

conclusions are applicable for the cross sections, as shown in Fig. 3b). We note that the TP 

contribution is significant only when small impact parameters play an important role. This is 

the case with straight-line trajectories, as well as with attractive potentials between the nuclei. 

For a repulsive potential, TP effects are suppressed, Fig. 3c), still having polynomial rather 

the HC-exponential character. 

It is interesting to note that the ORNL merged beam experiment [7] on charge transfer 

in collisions of C+ and H shows the v4 dependence at low energies rather than exponential, in 

support of the predicted TP effect [Fig. 4]. 
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Fig.4 Charge transfer for C+ +H collision: Solid line is proportional to v4 .(the TP effect). 

 
Another interesting comparison is charge transfer in collisions of Cl7+ with H. Since 

Cl7+ is a closed shell ion, the calculation on the charge transfer from a bare ion, N7+ on H, was 

done here, using the MOCC HC approach (the TP effects are not expected to be significant 

because of the high nuclear repulsion at small R�s). The agreement between experiment and a 

calculation based on four HC�s, in Fig. 5b), is excellent [5] 

A significant novel development in the adiabatic theory is for inelastic processes with 

more-than-one active electrons. The main difficulty with these systems is that they are not 

separable, which is a big challenge for computational quantum chemistry (CQC) in solving 

the adiabatic eigenvalue problem for complex R. For example, typical CQC approaches are 

the Hartree-Fock (HF) and Configuration Interaction (CI) methods, based on the variational 

principle and a Gaussian basis expansion. When the Hamiltonian of such problems is 

extended into the complex plane, the problem becomes nonhermitian (symmetric), while the 



 

 

Gaussian basis expansion is convergent only in the lower quarter of the first quadrant of the 

complex R-plane. The variational principle is replaced by the so-called bi-variational 

principle, which is applied separately to the real and imaginary parts of the eigenenergy. The 

basis convergence is improved by using the R-dependent coefficients in exponents of the 

Gaussian primitives [8]. 

Fig. 6a) shows real triplet terms of H+H system, with the approximate position of a 

localized S-type series (arrow) of hidden crossings [3] that governs the single electron 

ionization of the system [8]. The first three Riemman sheets of the unique, multi-valued,  

 
Fig. 5 a) Adiabatic term diagram for N7+ +H; The hidden crossings used in calculation are shown by 

symbols; b) Cross section for charge transfer in N7+ +H collision, obtained by CCHC (solid line), 

compared with the experiment (symbols), and multilevel LZ calculation (dashed line) [5]. 

 
multiple-connected eigenenergy surface of the H+H, and the most direct path for single-

electron ionization is shown in Fig. 6b). Finally, the cross section for the single-electron 

ionization of H in slow collisions with H atom, obtained by multielectron hidden crossings 

theory (MEHC) is shown in Fig. 7 and compared with existing experimental data. 

Similar agreement was obtained for ionization of He by proton impact [12], and 

ionization of ions by antiproton impact [13]. Oscillations in excitation cross sections for low-

to-medium collision energies were also explained by the HC nearly-adiabatic methods [14]. 

The application of the discussed adiabatic theories goes far beyond ion-atom collisions. An 

important group of systems are ion-molecule collisions, in particular collisions of protons 

with H2 molecules [15], where series of hidden crossings were found between vibronic 

adiabatic states. 
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Fig. 6 a) Adiabatic term diagram for the H+H collision system; Dashed arrow shows position 
of the S-promotion series through the single-excited triplet states; b) Complex adiabatic 
energy surface of the triplet adiabatic states of the H+H system; arrow shows the direction for 
ionization in the complex plane, |)(|2/1)( RERn =  
 
 

 

 

 

 

 

 

 

 

 

Fig. 7 Cross section for single-electron ionization in H+H collision, obtained by MEHC (solid line) 
[8], experiments (symbols) of McClure [9], Gealy [10] and Shingal [11].. 
 

3. ATOMIC DEVICES: A LOOK AT THE FUTURE 

 
 The fast emerging, multidisciplinary field of nanotechnologies leads to mesoscopic 

devices like molecular electronic switches, whose functionality can be fully described 

quantum-mechanically. Nearly adiabatic atomic physics may play a prominent role in these 

 



 

 

simulations. Nonlinear transport and tunneling in an electrically biased, open quantum system 

is a nearly adiabatic, electron correlated, scattering process modified by an external field. 

Molecular dynamics simulations of a spontaneous molecular monolayer formation on a metal 

substrate is strongly dependent on adiabatic intermolecular potentials. 
Quantum transport (of electrons) in molecules has become one of the �hot� 

multidisciplinary areas of study due to a possibility of design of controllable, �few electron�  

molecular scale devices, with a potential for developing new concepts in electronics 

(replacement of the flip-flop circuitry by a single-molecule switch). A critical step is a 

possibility of self-assembly of the molecular electronic elements into mono- (SAM) and poly- 

(SAP) layers. Such a possibility, together with nanometer dimensions of a few-electron 

molecular switch device promises a fulfillment of a dream of continuation and even 

acceleration of the Moore�s law (of approximately doubling the computer power each two 

years). One can anticipate a factor of about 1000 in increase of packing density and the switch 

quality (on-to-off ratio), accompanied with a decrease in power dissipation.  

 What is the role of atomic physics in the molecular electronics development? Since, in 

addition to the molecule, there are metal leads which connect the molecule to the rest of an 

electronic circuit, and at least closest layers of the leads strongly influence the levels of the 

molecule, a computational chemistry calculation of the adiabatic electronic structure of a 

large organic molecule + metal combination is a first step. On the other hand, conduction of 

an electron through the molecule is an electron-molecule scattering process, and in spite of 

different boundary conditions applied to a scattering state of the metal electron (Bloch states), 

many methods and experiences of the atomic scattering theory can be applied successfully.  

The ultimate goal is to understand and control a molecular device in detail. What is the 

current status in this field? Critical knowledge is absent. So far, only proof of principle exists 

for the self-assembly of mono-layers. It is also clear that there is a strong relation of the 

device functionality to the details of the molecule-lead junction as well as details of the 

chemistry of the molecule. A response of the device to the temperature, electric bias (steady 

and time-dependent), and chemical dynamics are far from a complete description. Finally, the 

control of various electronics functions  (transistor, diode, resistor) with molecular devices 

has not been established yet. On the other hand, experiments are very expensive and 

exclusive, which increases the importance of the theoretical approach, with simulations that 

incorporate quantum mechanics, not only to explain but to predict and design future 

molecular devices. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 a) The setup for the pioneering measurement [16] of conductance of the BDT molecule; b) 
Conductance and IU characteristics of the BDT molecule obtained experimentally [16] and c) 
theoretically [17]. 
 

A benzene 1,4 dithiolate (BDT) molecule with gold leads is used in recent experiments 

of M Reed [16], Fig. 8a). The thiol (sulphur) groups, attached at two ends of benzene, provide a 

strong covalent connection of the molecule and the gold leads. The pi-conjugated, 

nonlocalized electronic orbitals around the benzene ring enables the molecular conduction. 

The conductance through the whole system is dominated by tunneling of an electron through 

the potential barrier between the Fermi level in the metal and molecular states of BDT. The 

theoretical, nonlinear UI-characteristic of the system [16], Fig. 8c), although qualitatively 

looks similar to the experimental data, Fig. 8b), differs in absolute values up to the three 

orders of magnitude. It is not clear yet what is the cause of this disagreement. Is it the 

unknown detailed structure and geometry of the metal surface-molecule interface? Is it the use 

of inadequate correlation functionals in Density-Functional Theory (DFT)? Is it the role of 

neighboring molecular strands, or probably the effects of nonlinearity caused by external 

electric bias and temperature? 

 A molecular switch was realized in the laboratory with a BDT molecule [16], by 

attaching NH2 and NO2 groups on the BDT ring. Changes in the external field create a 

twisting effect (rearrangement of the electronic orbitals) that induces a switching function. 

The memory element is realized by removing the NH2 group from the switch. A charge stored 

on the NO2 group acts as a sink for a conducting electron, which creates a �binary 0� state (no 

conduction). With no charge on the nitro group, conduction is reinstated (�binary 1�). It is 

interesting that the spontaneous lifetime of the molecular binary state is of the order of 10 

minutes, which is about 105 times longer than that of a conventional silicon device. 

a) c)



 

 

 The first step and important part of the theoretical simulation of a molecular device is 

the computational chemistry (ab initio) calculation of the system structure. This provides the 

basic quantum-mechanical information which is further used for electron transport 

calculations and SAM formations. Density-functional theory, with a Gaussian or plane wave 

basis, is the only practical �method of choice�, that is efficient enough to treat very large 

molecules with currently existing computer power. Still, DFT is inherently inaccurate. This is 

caused by an ad hoc choice of exchange and correlation functionals. Implementation of these 

functionals in the DFT Hamiltonian reduces the problem to calculation of the single-electron 

orbitals, which is the main reason for effectiveness of the method. But, although the 

functionals are known with some certainty for various types of organic molecules, and for 

different types of metals, none of these might be applicable for the organic molecule-metal 

combinations, as is the case with molecular electronic devices. Therefore, a theory that 

incorporates many-body effects, and would go beyond DFT is highly needed. 

Even with the DFT approach, structure calculations of the mesoscopic system are 

numerically demanding. As illustration, Fig. 10 shows an example of a geometry optimization 

calculation for a set of three BDT�s, connected to the top and bottom gold leads (in (100) 

geometry). This system containes 70 atoms and 590 active electrons and requires 47 hours on 

320 processors IBM SP3 parallel computer, i.e. 14,930 processor-hours for calculation of its 

electronic structure. 

 

 
Fig. 10 A computer simulation of self-assembled monolayer of BDT molecules between two gold 
substrates 

 

 
Fig. 11 A typical geometry of the BDT molecule with gold (111) nanowire leads. 



 

 

Since molecular structure calculations describe closed quantum systems, there is a need 

for a theoretical approach that would extend them to treat the open quantum system 

(scattering) boundary conditions. One possibility is to apply the generalized tight binding 

model, requiring that only adjacent layers are coupled [18]. Once the electronic structure is 

available, the transmission function (the T-matrix for the scattering on the molecule) is found 

using the Green�s function technique. This enables propagation of the electron from the 

�infinite� electron reservoir on one end of the periodic lattice (left lead, Fig. 11), through the 

molecule, to the right periodic lattice (lead) and �infinite� reservoir on its right end. The 

constant potential difference is set between the reservoirs. 

As an illustration, Fig. 12a) shows the transmission function of the BDT molecule, for 

the device in Fig. 11. The selectivity of the transmission is a consequence of pairing of the 

molecular states of the BDT (deformed by the leads) with those in the leads. The transmission 
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Fig. 12 a) Transmission through the BDT molecule; b) Transmission through the infinite gold 

nanowire, Krstic et al, [18]. 

 
function of the infinite nanowire obtained from the system in Fig. 11 by replacing BDT 

molecule by a gold layer, is shown in Fig. 12b). This is always an integer, equal to the number 

of energy bands of the wire. 
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