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Hydrogen Demand Is Large 
and Growing Rapidly

• World consumes 50 million tons of H2/year
− ~80% intentionally produced; remainder, by-product H2

− 200 GW(th) if the H2 is burned
− 4 to 10% growth per year
− Applications: fertilizer, chemical industry, liquid fuels

• Within decades, the energy to produce H2
in the U.S. may exceed current  energy 
production from nuclear power



Liquid Fuels Production Is Rapidly Becoming 
the Major Market for Hydrogen
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The Growing Hydrogen Demand Creates a Bridge to the 
Hydrogen Economy—With a Future Hydrogen Energy 

Demand That May Exceed That for Electricity
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Hydrogen Could Exceed Electricity 
As An Energy Carrier By 2050

• Auto companies and Presidential initiate 
to develop fuel cells for cars within 10 y

• Technological transitions typically take 
several decades
− 40 years from whale oil lamps to electricity
− 30 years from horses to cars

• If H2 replaces liquid fuels, H2 demand may 
exceed electricity demand
− Y in energy projections
− One future: electricity, other future H2 and electricity
− No solid basis to predict which future will occur



Scale of Hydrogen Production 
Matches Nuclear Energy

• The economics of nuclear reactors implies 
energy outputs of 600 to 4500 MW(th)

• Newest world-class H2 plants (natural gas 
fuel) under construction will produce    
300 million ft3/day

• Equivalent to 2400 MW(th) reactor 
(Assuming 50% thermal to H2 conversion 
efficiency)

• No size mismatch



The Intrinsic Characteristics of Nuclear Power
Are Compatible with Hydrogen Production

(Remote Siting, Scale of Operations, and Full-Load Operations)
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Generation of Hydrogen Using 
Nuclear Energy

Several Technologies Available To Produce 
Hydrogen Using Nuclear Energy—All Impose 

Serious Requirements on the Reactor



Characteristics of Current Hydrogen
Production Techniques

• Most H2 is made from natural gas
− Heat + methane (CH4) + water (H2O) ⇒

hydrogen (H2) + carbon dioxide (CO2)
− Endothermic process with heat input to 900°C

• Water electrolysis is used to produce 
small quantities of H2
− Inefficient: heat to electricity to chemical 

energy (H2)
− Viable where electricity is cheap (night time)



Hydrogen from Steam Reforming

• Heat + methane (CH4) + water (H2O) ⇒
hydrogen (H2) + carbon dioxide (CO2)

• Endothermic process
− Natural gas option (current practice) uses CH4

to provide heat (combustion) and reduced H2
− Nuclear option (future) replaces some of the 

natural-gas heat source but not the reduced H2
from CH4

• Heat input to 900°C 



Nuclear-Assisted Hydrogen Production Uses High 
Temperature Heat (to 900oC) To Reduce Energy 

Requirements For Steam Reforming of Natural Gas
(Development Program in Japan)
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Hydrogen from Hot Electrolysis

• Heat + water (H2O) + electricity ⇒
hydrogen (H2) + oxygen (O2)

• Heat replaces some of the electric demand
• Heat input at 700 to 900°C
• High temperature operation may also 

reduce other losses in the electrolysis 
process



Hydrogen Production Using Hot Electrolysis Requires 
High-Temperature Heat (700-900°C) and Electricity
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Thermochemical Production of 
H2 Is The Leading Technology

• Heat + water ⇒ hydrogen (H2) + oxygen (O2)
• Heat input >750°C
• Low pressure

− Drive chemical reactions
− Minimize materials requirements

• Lowest potential costs
− Projected efficiencies of >50%
− Projected best long-term economics (60% of cold 

electrolysis)



Thermochemical Processes Convert High-
Temperature Heat and Water to H2 and Oxygen

(Example [leading candidate]: Iodine–Sulfur Process)
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High-Temperature, Low-Pressure Heat 
Required For Nuclear Hydrogen Production

Production Method Temperature (°C)

Hot Electrolysis 700-900

Assisted Steam Reforming To 900

Thermochemical >750



Low-Pressure Operation Is Preferred
• Low pressures for H2 production 

(thermodynamic equilibrium limits)
− Gas volume increases with chemical reactions
− Low pressure to maximize yield

• Minimize stress on high-temperature 
components

• Maximize safety
− Hydrogen may not be the primary hazard
− Other hazardous chemicals



Hydrogen Production Requirements

• Large production capacity (economics)
• High temperatures (process requirement)
• Avoidance of tritium in product 

(acceptance)
• Separation of hydrogen production 

system from the reactor (safety)
• Low pressure to hydrogen production 

facility (safety)



Reactor Options



Candidate High-Temperature 
Reactors for Hydrogen Production

• High-Temperature Gas-Cooled Reactor (HTGR 
and VHTR)
− Graphite-matrix, coated-particle fuel
− Helium coolant

• Advanced High-Temperature Reactor (AHTR)
− Coated-particle fuel similar to HTGR fuel
− Liquid molten-salt coolant

• Molten Salt Reactor (MSR)
− Combined liquid molten-salt fuel and coolant



Hydrogen Production Requires High 
Temperatures: Only Graphite–Core 

Reactors Clearly Meet Requirements
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Advanced High-Temperature Reactor
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The Advanced High Temperature Reactor (AHTR)  
Uses a Molten Salt Coolant and a Graphite-Matrix 

Coated-Particle (HTGR) Fuel
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The AHTR Combines Two Technologies 
To Produce High-Temperature Heat

• Coated-particle, graphite-matrix fuel
− Demonstrated temperature limit of ~1200ºC
− Same fuel technology used for high-temperature gas-cooled 

reactors
− Compatible with molten fluoride salts

• Molten fluoride salt coolant (NaF/ZrF4, etc.) 
− Very low pressure (boils at ~1400ºC)
− Efficient heat transfer: Similar to that of water
− Coolant for proposed fusion energy plants
− Developed for the Aircraft Nuclear Propulsion Program

• Aircraft Reactor Experiment operated at 815°C



The AHTR and HTGR Use The Same 
Graphite-Matrix Coated-Particle Fuel

(Japan HTTR: 950ºC Helium Exit Temperatures)
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The Molten Salt Reactor (MSR) Has  
Molten-Salt Fuel and a Graphite Moderator
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Boiling Points of Alternative Reactor Coolants
(Molten Salts Allow Low-Pressure, High-Temperature Operations)
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AHTR and MSR Molten Salt Coolants Allow All 
the Heat To Be Delivered at High Temperatures

(Matches Requirements for Hydrogen Production While Minimizing the 
Reactor Core and Heat-Exchanger Temperatures)
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Mobility of Tritium May Impact 
Reactor Choice

Reactor Coolant Fuel (Tertiary
Fission)

VHTR 3He (n→p) Solid Fuel

AHTR None Solid Fuel

MSR Liquid Fuel Liquid Fuel
(Higher mobility)



Molten Salts Are a Preferred Interface Fluid 
Between Nuclear and Chemical Plants

• Minimize safety and materials issues
− Low pressure minimizes stress on high-temperature 

equipment
− Low chemical reactivity

• Low pumping costs
− Efficient heat transfer from the reactor 
− Allows large separation between reactor and chemical plant

• Large experience base
− Aluminum industry uses molten fluoride salts in graphite  

baths to produce aluminum  (100+ years of experience)
− Molten-salts are the preferred high-temperature heat-transfer 

fluid in the chemical industry



Reactor Characteristics

Reactor Fuel Coolant Power
(MWth)

Pres.
(Atm)

VHTR Solid Helium 600 1000 to
2000

AHTR Solid Molten
Salt

2000+ <0.1

MSR Liquid Molten
Salt

2000+ <0.1



Conclusions
• Massive growth in hydrogen demand is 

expected under any scenario
• Making hydrogen is demanding
• Reactor design should be driven by the  

H2 plant requirements
− Three reactor choices
− Each has different strengths and weaknesses

• Limited number of reactor candidates that 
can clearly meet the requirements



Backup Viewgraphs



The Advanced High Temperature Reactor For Hydrogen 
and Electricity Production Uses A Molten Salt Coolant 

and Graphite-Matrix Coated-Particle (HTGR) Fuel
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The Safety Case for the AHTR:
Accident Control

• Low-pressure (subatmospheric) coolant
− Escaping pressurized fluids provide a mechanism for 

radioactivity to escape from a reactor during an accident
− Low-pressure (<1-atm) salt coolant minimizes accident 

potential for radioactivity transport to the environment
• Molten salt is a secondary barrier to prevent 

radionuclide releases to the environment (fission 
products and actinides dissolved in salt)

• Passive decay-heat-removal systems similar to 
those of proposed modular liquid-metal reactors



The High-Temperature, Low-Pressure, Liquid Coolant 
Enables Passive Decay Heat Removal In Large Reactors
(Example: AHTR Using Modular Liquid-Metal Reactor Decay-Heat System)
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Molten Salt Reactor: Electricity Production
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