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Abstract. We discuss an initial implementation of the coupled-cluster method for nuclear structure calculations and apply
our method to 4He. We will discuss the future directions that this research will take as we move from method testing and
development to more complete calculations.

THE NUCLEAR MANY-BODY PROBLEM AND COUPLED CLUSTER THEORY

Within the next 15 years the Rare Isotope Accelerator (RIA) will become a reality in some form. Even today, we are
facing, and will continue to face, an explosion of nuclear structure data that will require a confrontation with nuclear
theory both to verify the theory and to guide future experiments at RIA and beyond. In spite of the vast number of
nuclei that will be reached with RIA and other next-generation rare-isotope accelerators, many nuclei will remain
experimentally unexplored, and reliable theoretical models will need to be developed to predict their properties.

One may follow various theoretical paths to obtain information about the properties of nuclear systems. One path
originates from following a reductionist approach. One begins with some derivation of the nucleon-nucleon interaction
(such as that built upon meson exchange, chiral perturbation theory, or phenomenology), and one develops compu-
tational tools for solving the many-body problem, as well as one can from this point of view. Examples of research
efforts pursuing this approach include the Green’s Function Monte Carlo collaboration who begin with the Argonne
interaction and supplement it with effective three-body interactions [1], and the no-core shell-model collaboration who
generate a G-matrix

�
folded-diagrams effective interaction and diagonalize in a given model space [2]. Both methods

are ab initio from the many-body point of view: they begin with the bare nucleon-nucleon interactions. Another valid
approach which has been successful requires the development of effective nuclear interactions at either the mean-field
level through the use of Skyrme-like forces (see, for example, Ref. [3] and references therein), or with the shell model
by using effective interactions derived from experimental level and transition information [4].

The ab initio approaches, while difficult, allow one to study emergent phenomena such as deformation or vibrations
of the nuclear systems from the fundamental level of the bare interactions; however, the applications of these methods
are at the present time limited to light nuclear systems. The effective interactions (whether of the mean-field or
shell-model variety) may be applied to various regions of the nuclear chart, but they often (especially in shell-model
applications) rely on data-fitting within the region being calculated. The successful shell-model interactions, such as
the 1s0d interaction [5] or the 0 f 1p interactions [6], all require large data sets in order to be adjusted appropriately
to reproduce existant data and predict certain quantities within a given region. Herein lies the difficulty of relying on
fitted interactions: the experimental data coming from RIA and other facilities will not be dense enough to allow for
a successful fitting of effective shell-model interactions in regions of interest. With this in mind, it becomes essential
for nuclear theorists to explore methods that will allow for ab initio calculations of nuclei both near stability and in
regions where RIA and other radio-isotopic facilities will probe.

In these Proceedings, we will discuss a many-body approach, known as coupled-cluster theory, that may prove quite
useful in applications to nuclear structure. Coupled-cluster theory was first introduced in nuclear physics by Coester
[7] and Coester and Kummel [8]. Initial nuclear structure applications came in the mid-1970s with several papers
from the Bochum group [9]. Since that time, nuclear physics applications have been rather sporadic. On the other



hand, the history of coupled-cluster implementations in computational quantum chemistry have been rather dramatic.
The first chemistry application was discussed by C̆íz̆ek and Paldus [10], and the method became computationally
feasible due to work by Pople [11] and Bartlett and Purvis [12]. Pople received the Nobel Prize in chemistry in 1998
for his contributions to computational quantum chemistry algorithms such as those developed for the coupled-cluster
approach. (See Ref. [13] for an excellent practitioner’s review on applications in quantum chemistry.) The interesting
and desirable theoretical properties of the coupled-cluster method within computational chemistry have made it the
method of choice in computations of many-body correlation effects in atomic, molecular, and chemical systems. While
it was originally developed for the many-body ground-state, applications of the coupled-cluster method in quantum
chemistry now extend to excited states and open-shell systems.

Recent nuclear applications of the coupled-cluster technique include approaches in coordinate-space being ad-
dressed by the Manchester group [14]. Recently, Heisenberg and Mihaila [15] have suggested a somewhat different
formulation than that espoused in quantum chemistry. Outside of these efforts, only sporadic development work within
coupled-cluster methods has been pursued within nuclear theory. The reasons for this lack of pursuit in the nuclear
many-body problem probably arise from the lack of a good starting point, that is, a good bare nucleon-nucleon interac-
tion. In the last 10 years this problem has been effectively eliminated due to excellent nucleon-nucleon interactions that
give χ2 per degree-of-freedom of nearly one. These interactions include the phenomenological Argonne V18 potential
[16], the meson exchange potentials such as CD-Bonn[17], and the very nucleon-nucleon potentials based on chiral
perturbation theory [18]. Another reason that the method was not pursued was certainly the lack of computational
power available in the late 1970s as compared to today.

Several salient features of coupled-cluster theory make it an attractive theory to pursue. It is a fully microscopic
theory that can be used to obtain energies and eigenstates of a given Hamiltonian. Furthermore, the theory is capable of
systematic improvements through increasingly higher-order implementations of a well-defined scheme of hierarchical
approximations. Coupled-cluster theory is size extensive, which means that only linked diagrams enter into a given
computation. This is not true in typical shell-model particle-hole truncation schemes [13]. The method is also size
consistent: the energy of two non-interacting fragments computed separately is the same as that computed for both
fragments simultaneously [19]. This property is particularly relevant for chemical reaction studies and is not a property
of the shell model.

APPROACH TO COUPLED-CLUSTER THEORY

Our approach to the coupled-cluster equations contains two steps. We first derive an effective nucleon-nucleon
potential through a G-matrix formulation. We then apply the coupled-cluster method to the Hamiltonian containing
this G-matrix.

The G-matrix

The presence of a hard core in various channels of the nucleon-nucleon interaction (with repulsion on the order
of 2 � 5 GeV) causes difficulty for theories that wish to use basis state expansion techniques. One way to overcome
this difficulty is to use a renormalized effective interaction within the model space where one will actually perform
computations. This model-space, dubbed the P space, is a subset of the full Hilbert space. The excluded space, dubbed
the Q space, represents the remaining part of the Hilbert space and is, in principle, infinite in size. One may project
any operator into the P or Q space through the use of projection operators, P̂ and Q̂, such that P̂

�
Q̂ � 1. Brueckner

[20] originally developed the G-matrix theory that allows for the solution of the full A-body problem in the reduced
Hilbert space. See [21], and references therein for full details. Here we only discuss the basic equation which is

G � ω ��� V
�

V
Q

ω � QTQ
G � ω ��� (1)

where V is the bare nucleon-nucleon interaction, T is the kinetic energy operator, and ω is a starting energy. We
discuss the determination of the starting energy below. This equation requires iteration. Diagrammatically, this amounts
to generating all particle-hole ladder diagrams, with intermediate two-particle states outside the P-space, to infinite
order.

We demonstrate how our calculation proceeds in Fig. 2. We first choose the P space, as shown in Fig. 2. Within
that space, we compute the G-matrix elements of the renormalized interactions. We then define a reference Slater
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FIGURE 1. The diagrams summed by the G-matrix renormalization of the bare nucleon-nucleon potential. The wavy line
represents the medium-dependent reaction matrix G. Physically, these diagrams mean that the particles must interact virtually
with each other an arbitrary number of times in order to produce a finite interaction matrix element. Railed lines denote fermions
with momentum greater than k f (residing in the Q space).
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FIGURE 2. The choice of model space. Particle-hole excitations from the P-space (with energy cutoff K) to the Q-space are
allowed during the computation of the G-matrix. Coupled-cluster computations occur only in the P-space where the Fermi energy,
ε f , is determined by the reference Slater determinant � Φ 	 .

determinant from which we perform the coupled-cluster calculation. By performing the coupled-cluster calculations
only in the P-space, we insure that no double counting of many-body perturbation theory diagrams occurs. Those
diagrams that we do not include in this expansion are those for which a particle below the Fermi energy in the reference
Slater determinant moves to the Q-space; however, as one increases the P-space, the contribution of these diagrams to
observable quantities such as the energy should become very small.

By implementing the G-matrix formalism, we obtain as our Hamiltonian

H � ∑
pq

Kpqa†
paq
� 1

4 ∑
pqrs



pq � G � rs � a†

pa†
qasar � (2)



where Kpq are the one-body matrix elements of the kinetic energy operator, Kpq � 
 φp � K � φq � , and


pq � G � ω �
� rs � are

the antisymmetrized two-body matrix elements of the effective nucleon-nucleon interaction. The single-particle wave
functions are the basis states of the problem, and the labels p � q � r� s represent all single-particle quantum numbers. In
the oscillator basis, p ��� n � l � j � m � tz � , where n is the principal quantum number, l is the particle angular momentum, j
is the total angular momentum, m is the angular momentum projection, and tz is the isospin projection of the particle.
In the following, we use the labels i jk to represent single-particle states below the Fermi surface, and labels abc to
indicate single-particle states above the Fermi surface.

The Hamiltonian may be written in a slightly more convenient form by explicitly calculating the expectation of
the Hamiltonian in the reference state � Φ � , E0 � 
 Φ � H � Φ � . This reference state is a single Slater determinant and
represents, in this work, a doubly closed shell system. In this case, the Hamiltonian becomes

H � ∑
pq

fpq � a†
paq � � 1

4



pq � G � rs � � a†

pa†
qasar � � � E0 � (3)

where the � � indicates normal ordering relative to the Fermi vacuum. The Fock operator is given by

fpq � 
 p � K � q � � ∑
i



pi � G � qi ��� (4)

Our implementation of the coupled-cluster method

The basic idea of coupled-cluster theory is that the correlated many-body wave function � Ψ � may be obtained by
application of a correlation operator, T , such that

� Ψ ��� exp ��� T ��� Φ ��� (5)

where Φ is a reference Slater determinant chosen as a convenient starting point. For example, we use the filled 0s state
as the reference determinant for 4He. This exponential ansatz has been well justified for many-body problems using a
formalism in which the cluster functions are constructed by cluster operators acting on a reference determinant [22].

The correlation operator T is given by
T � T1

�
T2
�������

TA � (6)

and represent various n-particle-n-hole (np-nh) excitation amplitudes such as

T1 � ∑
a � ε f � i � ε f

ta
i a†

aai � (7)

T2 � 1
4 ∑

i � j � ε f ;ab � ε f

tab
i j a†

aa†
ba jai � (8)

and higher-order terms for T3 to TA. We are currently exploring the coupled-cluster method at the T1 and T2 level. This
is commonly referred to in the literature as Coupled-Cluster Singles and Doubles (CCSD).

We compute the expectation of the energy from

E � 
 Ψ0 � exp ��� T � H exp � T ��� Ψ0 ��� (9)

The Baker-Hausdorf relation may be used to rewrite the similarity transformation as

exp ��� T � H exp � T ��� H
���

H � T1 � � �H � T2 � � 1
2
�!�

H � T1 � � T1 � � 1
2
�"�

H � T2 � � T2 � � �#� H � T1 � � T2 � �$�%��� � (10)

The expansion terminates exactly at four nested commutators when the Hamiltonian contains, at most, two-body terms,
and at six-nested commutators when three-body potentials are present. We stress that this termination is exact, thus
allowing for a derivation of exact expressions for the T1 (1p-1h) and T2 (2p-2h) amplitudes. The notation tn will denote
all of the amplitudes of a given class, so that t1 represents the set of all ta

i amplitudes, and a similar definition holds for
t2. The equations for amplitudes are found by left projection of excited Slater determinants so that

0 � 

Φa

i � exp ��� T � H exp � T ��� Φ ��� (11)

0 � 

Φab

i j � exp ��� T � H exp � T �&� Φ ��� (12)
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FIGURE 3. Shown are the various types of correlations available in the CCSD equations. Upper left: the reference Slater
determinant. Upper middle: 1p-1h excitations. Upper right: two independent 1p-1h excitations. CCSD allows up to four independent
1p-1h excitations. Lower right: a single correlated 2p-2h excitation. Lower middle: two 2p-2h excitations. Lower right: two 1p-1h
excitations and a 2p-2h excitation.

The commutators also generate nonlinear terms within these expressions. To derive these equations is straightforward,
but tedious, work [13]. While the resulting equations for the single and double excitation amplitudes appear quite
lengthy, they are solvable through iterative techniques. We show in Fig. 3 an illustration of the types of excitations
allowed from the CCSD equations.

Once the amplitudes are obtained, the energy of the system may then be calculated. The CCSD energy is



H �
� ECCSD � ∑

ia
fiata

i
� 1

4 ∑
aib j



i j � G � ab � tab

i j
� 1

2 ∑
aib j



i j � G � ab � ta

i tb
j
�

E0 � (13)

This equation is not restricted to the CCSD approximation. Since higher-order excitation operators such as T3 and
T4 cannot produce fully contracted terms with the two-body Hamiltonian, their contribution to the energy equation is
zero. Higher-order excitation clusters can contribute indirectly to the energy through the equations used to determine
the amplitudes.

Because the energy is computed using projective, asymmetric techniques, an important question concerns the
physical reality of the coupled-cluster energy. Quantum mechanics requires that physical observables should be
expectation values of Hermitian operators. The coupled-cluster energy expression contains the non-Hermitian operator
exp �'� T � H exp � T � . However, if T is not truncated, the similarity-transformed operator exhibits an energy-eigenvalue
spectrum that is identical to the original Hermitian operator, H, thus justifying its formal use in quantum-mechanical
models. From a practical point of view, the coupled-cluster energy tends to follow the expectation value result (if the
theory is reformulated as a variational theory), even when T is truncated.

We note that the nonlinear terms that appear within the amplitude equations include terms that allow for 4p-4h
excitations. Indeed, while we speak of doubles in terms of amplitudes, the class of many-body diagrams involved in
the theory includes fourth-order diagrams.

Because of the nonlinearity of the equations, one must have a good first guess for the np-nh amplitudes. To solve
the equations, we rewrite them in the following form

Dait
a
i � fai

�
F1 � t1 � t2 ��� (14)

Dabi jt
ab
i j � 


i j � G � ab � � F2 � t1 � t2 ��� (15)

where Dia � fii � faa, and Di jab � fii
�

f j j � faa � fbb are energy denominators. We have made a simple rearrangement
of the projection equations for the amplitudes, Eqs. 12, in terms of these denominators. The functions F1 and F2
represent all other terms in the amplitude equations and depend on the amplitudes t1 and t2. For closed-shell nuclei,
we use a Moller-Plesset-like approach to generate the first guess for the iteration: we assume that all initial amplitudes
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FIGURE 4. The convergence of the ground-state energy as a function of the CCSD iterations.

on the right-hand side of Eqs. 14 and 15 are zero. This yields

ta
i � 1 �(� fai

Dai
� (16)

tab
i j � 1 �(� ) ab � G � i j *

Di jab
� (17)

We use this first guess for t1 � 1 � and t2 � 1 � to calculate the right-hand side of Eqs. 14 and 15. This then yields a new
set of amplitudes t1 � 2 � and t2 � 2 � on the left-hand side of Eqs. 14 and 15. We are then able to iterate the solution to
convergence.

Shown in Fig. 4 is the convergence of the total energy of the system as a function of iteration number. For our test
example, 4He, we achieve convergence at the 10 + 5 level by 30 iterations in a model-space that includes seven major
oscillator shells. Notice from the figure that most of the convergence is obtained within 10 iterations.

By investigating the different terms within the equations and their contributions to the energies, one is able to
generate a correspondence between CCSD and many-body perturbation theory. One finds that CCSD iterates the
lowest first-, second-, third-, and fourth-order many-body perturbation theory diagrams to all orders. It should be
noted that the third-order diagrams are incomplete at the CCSD level of truncation, although third-order corrections
may be included if they are desired [23].

INITIAL RESULTS

Our overall goals are to understand the structure of nuclei using coupled-cluster theory as our tool. We are at the very
beginning of this effort and have a few preliminary results that we will report here. We are computing at the singles
and doubles level of the coupled-cluster theory. At this level of truncation, we assume that all t3 and higher-order
amplitudes are zero. We also assume for the moment that only two-body potentials are present in the nuclear problem.
We have not yet corrected these results for center-of-mass contamination, which means that they should be viewed as
preliminary.

The nuclear CCSD code presently allows us to incorporate up to eight major oscillator shells within a full calcu-
lation. We uncouple all G-matrix elements and work with a completely uncoupled (or M-scheme in the shell-model
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FIGURE 5. The CCSD energy for 4He as a function of ω for various model spaces.

parlance) single-particle basis. We checked the code by performing calculations in a fairly small space (the 0s1d oscil-
lator space) using both the newly developed CCSD code and standard diagonalization codes. We find exact agreement
between the diagonalization and the CCSD for 2 neutrons and the deuteron systems. In all calculations, our two-body
amplitudes must obey fermion symmetry such that tab

i j �,� tab
ji �-� tba

i j � tba
ji . In all cases we find these symmetry prop-

erties to be exactly preserved. We have also tested that one sign problem or one index problem in any of the one- or
two-body correlation amplitude equations will destroy this fermion symmetry property.

We employ the new class of chiral potentials [18] as our bare nucleon-nucleon interaction starting point. The chiral
effective Lagrangians employed include one- and two-pion exchange contributions up to chiral order three and contact
terms that represent the short-range force. The chiral potential reproduces the NN phase shifts below 300 MeV
laboratory energy and the properties of the deuteron with high precision. We use the Idaho-B potential throughout
these Proceedings.

Two numerical parameters must be checked with each calculation. One of these is the oscillator parameter h̄ω . This
is a variational parameter in our theory, and we find that the energy is minimal at h̄ω � 11 MeV for Idaho-B and
the 4He nucleus. As was mentioned above, the G-matrix contains a starting-energy dependence, ω . We know that the
energy of the system is given by E � E � ω � . The appropriate choice for ω is then that energy for which E � ω . We
show in Fig. 5 this dependence, along with the dependence of our results on the size of the P-space we are considering.
Several interesting features emerge from this figure. The first is that as one increases the P-space, the resulting energy
depends less on ω . This is reasonable: if P were infinite, the solution would recover simply the bare V interaction which
has no ω dependence. The second interesting feature is the rapidity of convergence of the results. Already at seven
major oscillator shells one sees the onset of convergence of the total energy. In this model space we obtain the energy
E �.� 26 � 6 MeV. We are currently investigating various possibilities for including the center-of-mass corrections.

PERSPECTIVES

While the results presented above indicate our first steps toward coupled-cluster theory research, they show outstanding
promise. Our 4He calculations show evidence of convergence using 7-8 major oscillator shells. Preliminary calcula-
tions of 16O also show convergence within this model space.

Our shopping list for things to pursue in the next 2-3 years is quite long. Since we are just at the beginning of
this exciting endeavor, we first want to demonstrate the validity of the method for closed-shell systems such as 4He,



16O, and 40Ca. Our immediate challenge is to incorporate a center-of-mass correction for the interaction. The CCSD
does not include third-order diagrams, but this deficiency can be alleviated by inclusion of the triples correction [23]
transforming our method into CCSD[T]. We will also compare CCSD results which effectively iterates a class of
first-, second-, and fourth-order diagrams to all orders, with many-body perturbation theory, which sums all diagrams
of a given order. We will explore methods for computing excited states and open-shell systems within CCSD. We
will extend CCSD[T] to include three-body interactions. We will also explore the applicability of CCSD[T] to open
shell systems and excited-state calculations. We are confident that much can be learned from the many-body physics
by moving along this direction of research. We are equally confident that we will eventually be able to extend the
coupled-cluster techniques to very neutron-rich nuclei.
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