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Abstract

We present a theoretical framework for studying the dynamics of open quantum systems using
a quantum Monte Carlo approach that can treat the build-up and time evolution of coherences.
Our formalism provides a systematic path to derive the Monte Carlo algorithm starting from first
principles. We employ a reduced density matrix approach in which the total system is divided
into a system of interest and its environment. We derive a new Lindblad master equation for the
time evolution of the reduced density matrix of the system that can be solved in terms of Monte
Carlo sampling of quantum trajectories. We apply our method to study the coherence properties
of the internal state of a Kr3®* ion subject to spontaneous radiative decay. Simulations exhibit

clear signatures of coherent transitions.

PACS numbers: 34.50.Fa, 34.10.4+x



I. INTRODUCTION

Investigations of “open quantum systems” are an attempt to apply quantum statistical
mechanics to realistic complex problems. Even the most elementary system consisting of the
internal electronic state of “free” one-electron ion/atom is an example of an open quantum
system in contact with a “large reservoir’. The reservoir refers here to the radiation field,
which has an infinite number of degrees of freedom. The coupling between the system and
the vacuum fluctuations of the radiation field triggers the spontaneous decay of the ion/atom
and, in addition, it produces a shift of the electronic eigenstates, which is known as the Lamb
shift. The internal electronic state of a fast ion traversing solids provides another example of
an open quantum system in contact with a ”large reservoir”, which is given by the electronic
and nuclear degrees of freedom of the solid. Moreover, for highly charged ions (HCIs) the
coupling to the radiation field becomes comparable to the coupling to the particles in the
solid [1, 2]. Therefore, any realistic description of the open quantum system should include
both the radiation field and the degrees of freedom of the solid.

Theoretical analysis of open quantum systems is difficult not only because of the large
number of degrees of freedom of the reservoir but also for the high-dimensional characteristics
of the master equation of motion for the density matrix of the system [3-5]. If the density
matrix is expanded in a set of NV pure states of the system, the master equation is equivalent
to a set of N2 coupled equations involving N* couplings. Thus, computer storage for these
couplings becomes a major bottleneck in the calculation of the dynamics of the system. In
order to overcome this obstacle, quantum trajectory Monte Carlo (QTMC) techniques have
been independently developed for fast ions traversing solids [2, 6, 7] and in quantum optics
[8-10] for the description of few-state atomic systems interacting with the electromagnetic
field. These developments were, however, incomplete to treat the time development of
coherences between low-lying states of HCIs. In this work, we provide extension to QTMC
methods used in quantum optics and ion-solid interactions. Our focus is on the transient
build-up and destruction of coherences by stochastic processes. The main advancement
compared to developments in quantum optics is that we go beyond the standard secular
approximation [20, 21], which is incapable of describing the short time evolution of the
coherences of the system. In turn, the main drawback of previous developments for ion-

solid interactions is that they were strictly valid only for Rydberg states. Our extension



overcomes both limitations and provides a unified and general QTMC treatment describing
the dynamics of open quantum systems. Due to space limitations, however, we provide here
only examples for the coherent radiative decay of HClIs.

The basic idea involved in QTMC methods is that the reduced density matrix of the
system can be constructed by Monte Carlo sampling of quantum trajectories, each of which
is a solution of a non-linear stochastic Schrédinger equation (NLSSE). The QTMC solution
for the reduced density matrix of the system follows a specific class of quantum master
equations for the reduced density operator: the Lindblad equation [11, 12]. Therefore,
an important prerequisite for the development of a QTMC method is the derivation of a
realistic Lindblad master equation. Since the connection between the Lindblad equation
and the original master equation it attempts to approximate is far from clear [13-18], our
present derivation of a Lindblad equation is tested against a more reliable approximation.
The starting point (or judge) of our derivation is the Redfield equation [19], which results
from applying the Born-Markov approximation to the exact quantum master equation. We
apply our QTMC method to study the time evolution of the internal state of Kr3** subject
to spontaneous radiative decay. We illustrate that the present Lindblad form allows the
realistic description of coherences on a time scale corresponding to the inverse of the energy

spacing between near-degenerate energy levels. Atomic units are used throughout.

II. THEORY

In this section we briefly review the basic properties of the Lindblad master equation
and its solution by a quantum trajectory Monte Carlo method. A more comprehensive
description can be found in Ref. [23]. We consider the interaction of a system (S) with
a reservoir (R) which has a large number of degrees of freedom compared to those of the

system. The total Hamiltonian is given by

H:H5+HR+VSR ; (21)

where Vs describes the coupling between the system and the reservoir and Hg (Hp) is the
internal Hamiltonian of the system (reservoir).
The time evolution of the density operator p(t) of the system plus the reservoir is given

by the Liouville-von Neumann equation,



ip(t) = [H, p(t)], (2.2)
a solution of which is clearly out of reach for realistic systems. Instead, the focus is on the

reduced density operator of the system, o(t), defined as

o(t) = Trr[p(t)] (2.3)
where all degrees of freedom of the reservoir is traced out. Formulating a master equation of
motion for ¢ is a difficult task. The approach proposed by Lindblad starts by postulating an
equation based on the principle that the time evolution of ¢ should be a unitary mapping of
the system Hilbert space onto itself preserving complete positive definiteness. The reduced

dynamics in the system is therefore described by

5o = ils0) =33 [$'(0)5090 ()
+ o(t) SHk)S(k) — 2S(k) a(2) sf(k)] (2.4)

In (2.4) we have labeled the Lindblad jump operators S(k) by the index &, which represents
the degrees of freedom associated with the reservoir. In our application below this will
express the direction of polarization of the photons.

The physical significance of (2.4) has been extensively debated in the literature (see e.g.
[13, 15, 18]. We take (2.4) as a useful approximation for the dynamics of the open quantum
systems on time scales that are large compared to the relaxation time of the reservoir
but are comparable to the time scale for the evolution of the system degrees of freedom
where expectation values of observables can meaningfully be extracted. The importance of
the Lindblad equation in the present context is the mapping onto a non-linear stochastic
Schrédinger equation (for details see [11]), which can be solved by a quantum trajectory
Monte Carlo (QTMC) technique. Accordingly, the density operator of the system can be

constructed from the evolution of an ensemble of Ny.,; pure states

o) = 3 Y NI 29

where 7 labels the different stochastic realizations of quantum trajectories |¥7(f)). Such

an expression for o(t) tacitly assumes that an initial ensemble can be uniquely defined
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irrespective of its coupling to the reservoir. Obviously, preservation of positive definiteness
is a condition for the existence of the mapping onto an incoherent superposition of state
probabilities (2.5). The time evolution of |¥7()) is given by a NLSSE. Alternatively, it can
be calculated by constructing the corresponding time evolution operator U"(t,0) (defined
by [¥7(t)) = U"(¢,0)|¥"(0))), which can be decomposed into a sequence of products of two

types of evolution operators

ur (t7 0) = Ucnont(t7 tn) H U_;’ump(kﬁ tj)Ugnt(tj7 tj—l) ’ (tO = 0) (26)
j=1

One factor, U, (kj, t;), represents a discontinuous change of the wavefunction, a stochastic

jump, at randomly chosen times ¢ = ¢; and indexes k;. The other factor, Up,.(t;41,1;),
stands for a continuous change of the wavefunction during the time period [t;41,t;] between
stochastic “jumps”. The obvious technical advantage of the mapping of the Lindblad master
equation onto (2.6) is that memory storage with the dimension of the state space of the
system as N? rather than with N* for the direct solution of the Lindblad equation. Clearly,
the price to pay is the additional scaling with Ny, i.e. the number of trajectories required
to control the statistical error of the ensemble solution.

The basic ingredients of the Monte Carlo algorithm are therefore random jump times ¢;

and indexes k;, the continuous evolution operators U2, and the jump operators U The

cont» Jump®

continuous time evolution of the wavefunction during a time interval between two jumps is

given by

exp [—iHess (t; — £j-1)][V"(tj-1))
lexp [—iHess (8 — ;)] |7 (t;-1)) ]|

[W7(8)) = Ucont(t55 t5-1) 0" (85-1)) = | (2.7)

with
Heyp = Hs — 2> S'(k) S(k) (2.8)

being an effective, non-hermitian Hamiltonian that includes the effect of decay due to the
coupling to the reservoir[11]. The continuous evolution operator accounts for the first two
terms of the Lindblad equation.

Quantum jumps at times ¢; for a given value of k; are described by the operators

|U"(t; + dt)) = U (kj, t;) |97(t5)) = S(kj) |\Im(tj)>

sump = 1150) [9(5;))] (29)



where 6t — 0 is an infinitesimal time step. The jump operator simulates the effect of the last
term of the Lindblad equation. The jump times ¢; and indexes k; are sampled at random
from a probability density such that when the quantum trajectory is in a state |U"(¢)) the
average number of jumps per infinitesimal time step dt is dNy (t) = dt(U"(£)| ST (k)S (k) |¥"(t))

Up to this stage, the Lindblad jump operator S(k) is unknown. In order to determine
this operator, one needs to analyze the approximate reduction of the quantum master for
the density matrix of the system to a Lindblad form. We emphasize that such a reduction
is not unique. The starting point of our analysis is the Redfield equation [19], which is
obtained from the exact master equation after using the Born-Markov approximation. The
figure of merit for our Lindblad approximation is the degree to which the resulting density
matrix is capable of reproducing the time evolution of atomic coherences on time scales long
compared to the reservoir correlation time, 7., but short compared to the time scale of the
secular motion of the atomic population. Such an analysis appears to be missing for true
multi-state problems.

The Redfield equation for the reduced density matrix of the system can be written as

+ o (t) V() Xyup(k) = You (k) 0, (1) X 5 () XaV(k)Uvu(t)YJﬂ(k)] (2.10)

where the indexes «, 3,... denote the eigenstates of Hg (i.e. Hgla) = |a)e,) and wap =
€a — €3. The reason why the Redfield equation is not the same as the Lindblad equation

(2.4) is that the X and Y operators are not the same. In fact,

Yo (k) = Xo(k) x(h, ) (2.11)

where x(k,w) is directly related to the imaginary part of the susceptibility of the reservoir.

The crucial point is now that the Redfield equation does not possess the same structure
as the Lindblad equation (2.4). Mapping Eq.(2.10) onto a Lindblad form requires addi-
tional approximations which have profound consequences as to the regime within which the
Lindblad equations can be applied. The standard approximation involved is the so-called
“secular approximation” [20, 21] (also referred to as the rotating wave approximation ). If

we transform Eq. (2.10) to the interaction picture, all terms on the right hand side carry



oscillatory phase factors of the form exp(iw,gt). The secular approximation assumes that all
terms average out unless the phase is identically zero (i.e. exp(iwqst) is replaced by g, ,)-
If the energy spectrum of the system is non-degenerate, the secular approximation yields a

Lindblad form (2.4) with a jump operator

of (k) = dap(k) Xap(k) 1/ x(k;wsa) (2.12)

The secular approximation does not allow for the production of coherences between different
energy eigenstates due to the interaction with the environment but allows only for its decay.
This result is, however, only valid for the long time scale ¢t > T; = 27/|wep|. On an
intermediate time scale 7, < ¢t < T7, the build-up of transient coherences can occur but has
been mostly ignored in the context of Lindblad equations. In order to develop a Lindblad
form that can be applied in this intermediate time regime, we define the jump operator

Sep(k) as the geometric mean of X,g(k) and Y,4(k), i.e.,

Sa (k) = Xaﬂ(k)yaﬁ(k) = Xaﬂ(k) X(k7w[3a) (2'13)

This result represents a simple but useful generalization of the secular approximation. In
the next section we apply this generalization to the radiative decay of a HCI and show that
it provides an accurate algorithm to calculate the build-up of coherences in the time regime

1< Ty

ITII. APPLICATION AND CONCLUSIONS

In the case of a one-electron ion interacting with the vacuum fluctuations of the electro-

magnetic field, the system is the internal electronic state of the ion and the total Hamiltonian

(2.1) is

2
v: Z
Hy =~ = 2+ AH,q (3.1)
T

where 7 = (r1,79,73) is the position coordinate of the electron, Z, is charge of the ion,
and AH,. represents relativistic and Lamb-shift corrections. The eigenstates of Hg can
be expressed as |a) = |nljm,;) where n is the principal quantum number, [ is the orbital

angular momentum, and j and m; are the total angular momentum and its projection onto



the z-axis. The interaction between the system and the reservoir Vgr can be wrriten as the

product

Ver(7) = ~A - Vs, (3.2)

o | =S

where A is the vector potential. In the dipole approximation A does not act on the electron
and one obtains X,g(k) = (a|r|B) and x(k, wsa) = wi,-

The physics of the radiative decay process for a Kr*** ion is illustrated in Figs 1-4. In
Figs. 1 and 2 the ion is initially prepared at ¢ = 0 in the |[4p3/,1/2) state. The first figure

displays contour plots of the relative coherences

|0ag|
Qap = ——— (3.3)
V0088

on the -3 plane (for 040 < 1071 or g < 107! we set Qo5 = 0). Note that all diagonal
elements Q.o are equal to unity (unless o4, < 1071%), and, therefore, the figure does not
provide a quantitative measure of the time evolution of the populations. Since density
matrices have the property |oas| < \/Taa0gss, the relative coherence takes values in the
interval 0 < Qqp < 1. If the system is in a pure state, all off-diagonal relative coherences
of populated states are equal to unity. Finite relative coherences smaller than unity imply
that the system is in a partially coherent state.

Direct decay channels for the electron initially in the |4ps/,,1/2) state are the 1s, 2s, 3s and
3d states. 2p levels are populated slowly and indirectly via the decay of the 3s or 3d states.
A remarkable aspect of the direct radiative decay from a single initial state is that unless
a measurement is taken to determine the state of the emitted photon, the system decays
into a partially coherent superposition of states. Inter-shell coherences (different n quantum
numbers) are rapidly washed out as a consequence of their large level splitting wqg (i.e. the
natural decoherence time T7 = 27/wqg is very small). Therefore, in the following we focus
on the 3s-3d and 3d-3d coherences. The most striking feature in figure 1 is the transient
build-up of off-diagonal elements (3s-3d and 3d-3d coherences) at short times ¢ < T; and
their successive decay at much longer times ¢ > T;. Such features are absent in the standard
secular approximation.

In order to verify the accuracy of the proposed jump operator ((2.13)) entering the Lind-

blad form, we compare in Fig. 2 the time evolution of selected density matrix elements with



the result obtained solving the full Redfield equation (2.10) as well as that of the Lindblad
equations using the standard secular approximation ((2.12)). For the diagonal elements
describing the population of the 3s1/5,_1/2 and 3dz/s,_1/2 states all three approximations
agree well with each other. However, only our Lindblad form can reproduce the transient
build-up of coherence due to the spontaneous decay as predicted by the Redfield equation.
The secular approximation, by construction, fails. Coherences begin to be damped out for
times ¢ > t; = 27/ |wss 34| = 7.6a.u. Nevertheless, smaller non-varnishing coherences can
be observed even beyond %7, the reason being that the lifetime of the ”"feeder” state is even
longer and continuously replenishes the coherence. The point to be noted is that the stan-
dard secular approximation fails even for times longer than ¢; and up to the lifetime of the
feeder state. It is therefore completely inadequate for the entire transient regime.

In Figs. 3 and 4 we provide another example of coherent radiative decay for which
the system is initially prepared in a coherent superposition of the 3s1/5 _1/2 and 3pi/2,_1/2
states: [¥(0)) = (|3s1/9,-1/2) + |3p1/2,-1/2))/V2. The contour plots in Fig. 3 illustrate the
different time scales involved in the time evolution of this problem within the n = 2 shell.
At t = 0.2a.u. the ion has decays into a partially coherent superposition of most states in
this shell. At ¢ = 2 coherences between the 2ps/; and 2p,/, vanish since this time is close to
the decoherence time given by the fine structure splitting. Finally, at £ = 210a.u., even the
coherence between 2p;/, and 2s,/, states vanishes because the propagation time is longer
than the decoherence time given by the Lamb shift (~ 99a.u.). Figure 4 shows (much like
Fig. 2) that the proposed generalization of the jump operator (2.13) provides an excellent
approximation for the description of the production and destruction of coherences due to
radiative decay.

In summary, we have derived from first principles a general formalism based on the
Lindblad equation and its quantum trajectory Monte Carlo implementation to describe
the dynamics of open quantum systems. Compared to other work in this field, the main
development introduced in this article is that we go beyond the secular approximation and
we provide a method that gives good account for the short time evolution of the coherences

of the system.
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FIG. 1: Contour plots of relative coherences of the reduced density matrix of a free standing Kr3+
ion that radiatively decays for various propagation times as a function of the state index. The
system is initially prepared in the pure state |1)(0)) = |4p3/,1/2). For visual clarity, we only plot

the matrix elements involving m; > 0 states.

FIG. 2: Comparison of selected elements of the reduced density matrix of a free standing Kr33+ ion
that radiatively decays calculated using three different methods. The system is initially prepared
in the pure state [1)(0)) = [4p3/2,1/2)- The figure displays (a) the populations of the 3s; /9 _1/2 and

3d3/2,—1/2 states, and (b) their relative coherence.

FIG. 3: Contour plots of relative coherences of the reduced density matrix of a free standing Kr35+

ion that radiatively decays for various propagation times as a function of the state index. The

system is initially prepared in the pure |1(0)) = (|3s1/2,—1/2) + |3p1/2,_1/2))/\/§
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FIG. 4: Comparison of selected elements of the reduced density matrix of a free standing Kr33+ ion
that radiatively decays calculated using three different methods. The system is initially prepared
in the pure state [1(0)) = (|3s1/2,—1/2) + |3p1/27_1/2))/\/§. The figure displays (a) the populations

of the 2s/5 _1/2 and 2p;/o,_1 /2 states, and (b) their relative coherence.
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