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Outline of Presentation

• TCP 
– Performance Issues
– Simplified Model

• Parallel-TCP
– Performance Equations

• Comparative Performance
• Dynamic Right-Sizing
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Background
• High bandwidth links  ~1Gbps

– Default TCP stack typically achieves only a fraction of 
the available bandwidth

• Reasons
– Inadequately Tuned buffers

• Dynamic right-sizing (Feng et al)
– Dynamics of TCP – AIMD (this paper)

• Early losses prematurely terminate slow-start

• Motivation
– Just simply using parallel streams improves throughput

• Understand the mechanism for parallel-TCP
– When and how to employ these methods

• SLAC – U Wisconsin:  Parallel TCP
• SLAC – Rice U.:  Buffer tuning
• SLAC – LANL : Combination
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TCP Performance – Thanks to Tom Dunigan, ORNL

Packet losses during startup: 

start is prematurely terminated

Available BW= 500 Mbps

Achieved BW= 18M Mbps

instantaneous

average

Packet  loss

Early packet 

drops

ORNL, TN LBNL, CA
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Simplified View: Dynamics of TCP

TCP Outline
– Uses window mechanism to send W bytes/sec
– Dynamically adjusts W to network and receiver state

– Keeps increasing is no loses
– Keeps shrinking if losses are detected

• Slow start phase: 
– W increase exponentially until W_t or loss

• Congestion Control:  AIMD
– linear increase W with delivered packets
– Multiplicative decrease with loss

Slow start:a
Congestion control:1/w

time

Early loss slows 
throughput

timetime

W
W_t

W
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Low- and high-FS Regions of TCP
FS Region
Slow-start followed by constant flow
Small flow window – no losses

• High-FS Region
– Slow-start followed by saw-tooth variations
– Low bandwidth or high loss-rate

flow
 windo

w
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Simulation Setup:TCP Competing with UDP 
2 simulation) CBR rate is varied to control 

available bandwidth on the 
second link

TCP/Reno

sink

UDP/CBR

Router

Poincare phase plot:
Window-size W(t) vs. 

end-to-end delay D(t)

2Mb, 10ms,DT

2Mb, 10ms,DT

1.7Mb, 10ms,DT

D(t)

W(t)

W(t)

time

UDP/CBR=1Mbs
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Simulation Results: W(t)-t

CBR: 0bps

No losses

CBR: 0.5 M bps

CBR: 1.0 M bps CBR: 1.5 M bps
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Throughput:   

CBR: 0 BPS

Available BW: 1.7M

Achieved BW: 1.65M

CBR: 0.5M BPS

Available BW: 1.2M

Achieved BW: 0.9M

CBR: 1.0M BPS

Available BW: 0.7M

Achieved BW: 0.6M

CBR: 1.5M BPS

Available BW: 0.2M

Achieved BW: 0.1M

Source output

Receiver goodput
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Parallel-TCP
• Method:

– Divide the message into equal parts
– Send them as individual streams

• Adhoc Method
– Developed by application users on >100Mbps networks
– Easy to use and performs very well in practice – part of GridFTP
– Typically improves throughput by a 

• mulltiplicative factor in >100Mbps networks
• Smaller factor over Internet

• Analysis
– Mostly in congestion-control phase 

• Hacker (2002), Kelly (1999), Crowcroft et al (1998)
– Slow start phase has not been addressed earlier

• But has significant effect on throughput
• Complicated dynamics – due to interacting streams
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Throughput of Parallel-TCP: Simulation Results: 
Typically throughput is better if more streams are employed

Single stream

Four streams

Competing CBR UDP traffic

throughput

Low loss regions: 
single stream is better
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Scenario: Sequence of p losses:

Simplifying Assumption:
– : “average” growth rate of W(t) during slow start phase
– : “average” growth rate of W(t) during congestion control phase

– : growth rate of single stream

where                                     if 

otherwise

time

W

T1     T2               Tp       TM

SSr
CCr

( )Sr t

[ 0, 1] ( 1, ]( ) ( ) ( )S SS T T CC T TMr t r U t r U t? ?
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Parallel-TCP: Window Growth-Rate

Growth rate n-parallel TCP is

Slow-start:

Congestion control: n/w

I loses: 

n p
ara

llel 
TCP
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n-parallel TCPSingle TCPTime interval
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Parallel-TCP: Slow Start Phase

Growth rate n-parallel TCP is

Single vs. n-parallel TCP
– Faster slow start: duration ~c log(W_t)

• Single: 
• Parallel:

– Sustained slow-start under transient initial 
loses – throughput grows faster longer

• Single – small loss spike kills slow start  [T0,T1]
• Multiple – with I spikes, residual rate  [T0,Tn]

Summary
Parallel-TCP starts with faster rate and gradually slows 

down in presence of losses
Slow-start:

Congestion control: n/w

I loses: 

n p
ara

llel 
TCP
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Parallel-TCP in Congestion Control Phase

Faster recovery in Congestion Control
• Single: 1/w
• Parallel: n/w

Dynamics are very complicated since paths are restricted to a 
small set – the streams compete with themselves

• This is the most analyzed phase in past works

Slow-start: na

Congestion control: n/w

I loses: (n-I)a+I/w

n p
ara

llel 
TCP
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Better Performance of Parallel-TCP
Quicker response and higher throughput

UDP CBR 1.0 Mbps

No UDP CBR

Single stream Four streams

Faster growth
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Effects of Flow Window size
Simulation Results

Flow window: 5 Flow window: 20

Flow window: 21 Flow window: 30

Choosing higher flow 
window does not mean 
higher throughput:

FW=20 has no losses

FW=21 incurs loses
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Effects of Flow Window Size

Flow window: 5

Throughput: 0.55M

Flow window: 21

Throughput: 1.45M

Flow window: 20

Throughput: 1.65M

Flow window: 30

Throughput: 1.5M

Larger flow window:

Started AIMD process 
which reduces throughput

Strategy:

Keep flow window below 
bottleneck bw

Caveat:

Bottleneck bw may be 
close to zero if there is a 
competing TCP stream
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Coarse Analysis of Congestion and flow window controls

Flow window has significant effect on throughput
– Non-monotonic relationship between flow-window size and throughput

Dynamic flow-windows vs. n-parallel TCP: Performance depends on 
losses

– Low loss – dynamic right sizing is better
• Choose flow window slightly lower than bottleneck bandwidth
• Parallel TCP creates additional loses which reduces throughput

– High loss – parallel-TCP is better
• Effect of flow window is nullified – essentially single TCP
• Advantages are same as the single vs parallel TCP

Slow start:a

Congestion control:1/w

time

Single TCP

Different fixed 
flow windows

Throughput
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Conclusions

• TCP is sub-optimal in high bandwidth links
– Buffer tuning and parallel streams provide some solution
– We provide fairly coarse analysis of both methods

• Parallel-TCP provides better throughput under high loss
– But fairness issues are unclear 

• Flow-window tuning improves throughput under low loss
– Degenerates to single stream under high loss

• Several Open Issues
– Detailed analysis – employ actual rates r(t)
– Dynamics of window sizes and packet delays
– General Fairness Issues
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Coarse Analysis of Initial Dynamics of Parallel-TCP

Single vs. n-parallel TCP 
– Faster slow start: duration ~c log(W_t)

• Single: a
• Parallel: na

– Sustained slow-start under transient 
initial loses – throughput grows faster longer

• Single – small loss spike kills slow start
• Multiple – with I spikes, residual rate (n-I)a+I/w

– Faster recovery in Congestion Control
• Single: 1/w
• Parallel: n/w

Dynamics are very complicated since paths are restricted to a small set 
the streams compete with themselves

Slow start:a

Congestion control:1/w

time

Early loss slows 
throughput

Slow-start: na

Congestion control: n/w

I loses: (n-I)a+I/w

Single TCPSingle TCP

n p
ara

llel 
TCP

Kelly (2001) result deals with 
congestion control phase


