
 1

Preventing Computational Chaos
in Asynchronous Neural Networks

Jacob Barhen Vladimir Protopopescu
Center for Engineering Science Advanced Research
Computing and Computational Sciences Directorate

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6355

barhenj@ornl.gov

Abstract. One of the primary advantages of artificial
neural networks is their inherent ability to perform
massively parallel, nonlinear signal processing.
However, the asynchronous dynamics underlying the
evolution of such networks may often lead to the
emergence of computational chaos, which impedes
the efficient retrieval of information usually stored in
the system’s attractors. In this paper, we discuss the
implications of chaos in concurrent asynchronous
computation, and provide a methodology that
prevents its emergence. Our results are illustrated on
a widely used neural network model.

1. Introduction
Artificial neural networks are massively parallel,
adaptive dynamical systems [1]. Their models are
inspired by the general features of biological
networks. In such networks, asynchronous behavior
is prevalent. It arises from delays in nerve signal
propagation, refractory periods, and adaptive
thresholding [2]. Recently, there has been conside-
rable interest in better understanding and exploiting
the computational properties of asynchronous
neurocomputing models (see [3-6] and references
therein).

From an algorithmic perspective, two regimes have
traditionally been considered for updating quantities
of interest [7-9]. In the synchronous regime, all nodes
simultaneously update their state variables. This
implies that each node must receive, within the
interval ∆ characterizing the resolution of the
discrete-event network dynamics, all the necessary
information it needs for its computation from all the
nodes to which it is connected. In the asynchronous
regime, only one node (usually determined randomly)
is allowed to update its state on the basis of its inputs,
and only after state information has been received

from all required nodes. Clearly, this type of asyn-
chronicity limits the ability of a network to perform
massively parallel, distributed information pro-
cessing. Hereafter, we will refer to this regime as
sequentially asynchronous. To date, both paradigms
still provide the algorithmic foundation of available
computational models [3-6].

The true (concurrent) computational asynchronicity,
however, implies an uncoordinated, system−wide
activity. In that context, there is a strong motivation
to develop algorithms that can fully exploit such a
behavior. It should be noted, however, that
asynchronous relaxation algorithms have long been
known to give rise to computational chaos [10].

In the sequel, we first discuss some implications of
asynchronous computing. Then we provide a metho-
dology that prevents the emergence of computational
chaos to enable efficient retrieval of information
stored in attractors of the network. Finally, we
illustrate our results in terms of the well established
Grossberg−Hopfield model [8].

2. Limitations of Previous Approaches.
Several important limitations can be associated with
the lack of concurrent capabilities for asynchronous
computing in present models of artificial neural
networks. These include problems encountered
during: (1) VLSI, optical, or opto-electronic compu-
tations; (2) discrete time simulations on large−scale
high−performance computers; and (3) emulation of
biological systems. For instance, complex global
synchronization circuitry is typically needed in VLSI
circuits and optoelectronic devices to neutralize the
clock skew effects arising from variation in the
physical [11] and/or optical [12] path lengths of the
actual synaptic interconnections. Not only does this
circuitry lack biological basis, it also limits the

Preprint, International Conference on Artificial Intelligence Applications
Malaga, Spain, September 2002 AIA’02

 2

overall network performance to operate at the rate of
the slowest neuron, and enforces rigid firing
sequences that would be difficult to sustain due to
signal leakages and component instability. It is well
known [13] that in large−scale networks such
self−induced pathological activation could destabilize
the entire neuromorphic system.

From a purely algorithmic perspective, let us con-
sider a synchronous algorithm implemented on an
MIMD parallel computer. The processors associated
to sets of neurons must communicate their partial
results to each other, at every instance of time
specified by the precedence−constrained task graph
obtained from the problem decomposition. Such
almost sequential algorithms produce overheads in
the form of load imbalance due to processor
inactivity. The potentially lower processor utilization
then enhances resource contention due to
communication and coordination requirements, and
can lead to severe performance degradation in a real-
time network environment.

Finally, from a biological emulation perspective, the
current synchronous paradigm implies that neurons
are not allowed to evaluate a firing threshold without
having to wait to receive excitatory or inhibitory
input signals from all other neurons to which they are
connected. Failure to receive input from some
inoperating node in the sequentially asynchronous
case could lead to blocking of the entire network.
Both alternatives are quite unacceptable.

3. Basic Concepts
We begin by defining more precisely what we mean
by concurrent asynchronous computation. Let N
denote the total number of nodes (neurons) in the
network. A quantity of interest, un(t), is being
estimated at each node n, where t indexes a discrete
temporal sequence. Let ϕ be a nonlinear operator
from RN to RN, whose network components are
expressed as ϕn(u1, u2, … uN).

Definition. A concurrently asynchronous system
iteration, denoted by the tuple {ϕ, u(0), ξ, ψ},
corresponding to the operator ϕ, and starting from a
given vector of initial estimates u(0), is a sequence of
state iterates u(t) of vectors in RN, obtained by the
following recursion:

1 1
(1)

(1) if
()

(((),..., (()) if .
n t

n
n tN N

u t n S
u t

u x t u x t n S




− ∉
=

∈ϕ

Here, the sets xn(t) index the availability of the n-th
node’s most recent updated state. The update
configurations of the network are given by ψ = {
x1(t), …, xN(t) | t = 1,2, …}. St denotes the set of
nodes that carry out an update at the t-th time grid
point. The set ξ ={ St | t = 1,2, …} is the sequence of
nonempty subsets of nodes that performed an update
at each t.

Assumptions. Three operational assumptions are
made. Two refer to the set ψ, and one constrains the
set ξ. Specifically, we require:

• Each consecutive update uses only state
information previously available at the node
under consideration, i.e., xn(t) ≤ t – 1.

• More and more recent state information must be
used in evolving the set of nodes; in other words,
xn(t) considered as a function of t tends to
infinity as t tends to infinity.

• Node n is not starved in ξ, i.e., there exists a
finite natural number s ∈N, such that each node
updates its estimate at least once in every s
successive time intervals.

The above definition provides a formal framework
for algorithms that implement concurrent, asynchro-
nous network dynamics. Such a dynamics is capable
of updating the nodes in an uncoordinated manner,
where the neurons are seen as a collection of
functionally cooperating processes, with no explicit
dependencies to enforce waiting at synchronization
points for the purpose of swapping partially
computed results. Since the ensuing dynamics may
become chaotic, additional tools are needed to
guarantee that correct results are ultimately obtained.
These tools are presented next.

4. Contraction Theorems
The concept of contraction [14] plays a fundamental
role in the iterative solution of nonlinear equations. It
is most useful to express contraction in terms of
vector norms, which induces a partial ordering on
RN.

Definition. An operator ϕ: D ⊂ RN → RN is
called a Φ-contraction on a set D0 ⊂ D, if there exists
a linear operator Φ ∈ L(RN) with the following
properties:

 3

(2)
(2)
(2)

| () () | |

1.

a
b
c

• −

• −

• −

− ≤ −
≥

<

u v u vΦ
Φ
Φ

|
0

ρ()

ϕ ϕ

The first property implies Lipschitz continuity.
Indeed, Φ is often referred to as the Lipschitz matrix
of ϕ. The latter requirements, namely non-negativity
and spectral radius of Φ, generalize the typical
specification of the contractive constant used in
conjunction with the usual norm on RN. The
existence of a fixed point is then given by the
following theorem.

Contraction Mapping Theorem. Suppose
that ϕ: D ⊂ RN → RN is a Φ-contraction on the
closed set D0 ⊂ D, such that ϕ(D0) ⊂ D0. Then, for
any u(0) ∈ D0, the sequence

 0, 1, 2, ... (3)(1) = (()) tt t =+u uϕ

converges to the unique fixed point (denoted u(∞))
of ϕ in D0, and the following error estimate holds for
t = 0,1,2, …:

(4)| (1) () | (() (1) | . t t t+ − ∞ ≤ − − −u u I u u−1Φ) Φ |

These concepts can be applied to study the
convergence of concurrently asynchronous time-
evolving processes in general, and neural networks in
particular. In that context, a theorem by Baudet [15]
is of particular relevance.
Baudet’s Theorem. If ϕ: RN → RN is a Φ-
contraction on the closed subset D ⊂ Rn, and if ϕ(D)
⊂ D, then any concurrent asynchronous iteration
corresponding to ϕ and starting with a vector u(0) ∈
D, converges to a unique fixed point of ϕ on D.

We will now apply these concepts to neurocompu-
ting. For illustrative purposes, we will focus on the
Grossberg−Hopfield (GH) network.

5. Asynchronous Neurocomputing
Consider the temporal evolution of a fully connected,
GH−type neurodynamical system [8]. Such a system
is modeled by the following system of coupled,
nonlinear differential equations:

 . (5)()n
n n nm m m m n

m

du
dt

a u T g u I+ = +∑ γ

Here un represents the internal state of the nth neuron.
The strength of the synaptic coupling from neuron m
to neuron n is denoted by Tnm, and the external bias is

denoted by In. The sigmoidal function gn modulates
the neural response, γn denotes the gain of the
transfer function of the nth neuron, and an represents
the inverse of a characteristic time constant or a
decay scaling term. To create a discrete event
formalism, we replace the time derivative of un with a
first order finite difference representation. We select
the explicit (forward) Euler scheme,

, (6)(1) ()) /(n
n n

du
u t u t

dt
≅ + − ∆

despite its simplicity and occasional inadequacy, in
order to illustrate an intriguing property of
asynchronous computation. Indeed, it is well known
that the forward differencing Euler scheme does
usually not yield a correct integration of differential
equations, except for very small discretization (time)
steps ∆. Hereafter, we will show that under
concurrent asynchronous processing, even for
arbitrarily large but finite time delays (e.g., of the
order of hundreds of ∆’s), correct convergence to the
attractors of the dynamical system (5) is achieved
under appropriate constraints on the model
parameters.

Let ϕn(u) denote the nth component of the GH
operator obtained from Eq. (5) using the
discretization scheme (6). We have

(7)()) .(()n n n n nm m m m n
m

u a u T g u I= ∆ ++ − +∑uϕ γ

We seek convergence to fixed-point attractors of (5).
For any two phase-space points u and v in a domain
of attraction, we can write

)

(8)

() () (1 ()

()].[()
n n n

m m

n

nm m m m
m

u

g

a
T g u

−

+

− = −∆

∆ −∑
u v

γ

ϕ ϕ
γ
n

m

v
v

Taking the vector norm, we obtain

| | |

(9)

() () | 1 |

() | .| | | ()
n n n

m m

n

nm m m m
m

u

g

a
T g u

⋅ −

+

− ≤ −∆

∆ ⋅ −∑
u v

γ

|ϕ ϕ
γ

n

m

v
v

We assume that, for each neuron, the transfer
function gn: R → [-1, +1] is of class C 1, and that
| | 1ng ′ ≤ . This is indeed the case for the neural
response functions usually considered, i.e.,

1

() tanh() (10 a)
() (1) . (10 b)

or
u

g u u
g u e− −

−=

= + −γ

γ γ
γ

 4

Then, the Mean Value Theorem implies that there
exists a number z ∈ R such that

). (11)() () () (n n n n n n n ng u g g z u− −′=γ γ γn nv v

Thus

| | | . (12)| () () | |n n n n n n ng u g u− ⋅ −≤γ γ γn nv v

Regrouping all terms, we obtain

| | |

| | (13)

() () | 1 |

| .| | |
n n nn

nm m m
m

ua
T u

⋅ −

+ ⋅ −

− ≤ −∆

∆ ⋅∑
u v|ϕ ϕ

γ
n

m

v

v

Let us now define a matrix Φ in the following
manner:

(14)| | | | | | .1nm nm mnmn Ta= + ⋅−∆ ∆Φ δ γ

We see that, by definition, Φ is non-negative. Consi-
dering Eqs. (13−14), we observe that

| (15)() () | | ,n n nm m
m

u −− ≤ ∑u v|ϕ ϕ Φ mv

or, equivalently

 | (16)() () | | .−− ≤ ⋅u v u vΦ|ϕ ϕ

Thus, the GH operator ϕ is Lipschitzian with
Lipschitz matrix Φ. From Baudet’s theorem, for ϕ to
converge to a fixed point in an appropriate basin of
attraction, the spectral radius of Φ must be less than
one. Our basic idea, here, is to use this requirement to
establish constraints on the model parameters. In
order to produce an operational statement, we invoke
the Beckenbach – Bellman theorem [14]. For any
vector y with positive components, we can write:

1 1
1 1

y y
min max . (17)

y y

m N m N

nm m nm m
m m

n N n N
n n

= =

= =
≤ ≤ ≤ ≤< <

∑ ∑Φ Φ
ρ(Φ)

In particular, we can choose all vector components yn
to be equal. The contraction requirement, ρ(Φ) ≤ 1,
then translates into

1
1

max 1. (18)
m N

n N nm
m

=

≤ ≤
=

<∑Φ

Recalling equations (2-b) and (14), we see that the
above inequality induces constrained inter-

relationships between the values of the model
parameters an, ∆, γn, and Tnm (with n, m = 1...N).
Explicitly, one obtains

max (19)| | (| | | |) } 11n

m
nm mn Ta∆ +∆ ⋅ <− ∑{ γ

and
(20)|1 | | | | | 0 .n m nm mn Ta∆ +∆ ⋅ >− δ γ

It is important, at this stage, to emphasize that the
reader should not confuse arbitrarily large (but finite)
delays with large values of ∆. If that were the case,
Eq. (19-20) would require arbitrarily small values for
γn, the system would become almost linear, and chaos
would be excluded by definition. In our paradigm,
delays are handled in the framework of a set-theoretic
formalism (they appear implicitly in the set ξ). Thus,
we allow for arbitrarily large delays, without
affecting the structure of the dynamical system.

To fix the ideas, and without loss of generality, let us
consider the simplest situation where all gain
parameters γn are positive, equal and set to γ. Then,
convergence of the concurrently asynchronous
dynamics of the GH model will be guaranteed if the
parameters satisfy the following relationships.

10 ; 0 min ; a)

| |

22 1 ; 0 min . b)
| |

n
n n

nm
m

n
n n

nm
m

a
a

T

a
a

T

< < <

−
> > <

∑

∑

γ < (21−
∆

∆
γ < (21−

∆ ∆ ∆

We note that these conditions, once ensured, do not
have to be changed during the calculations, even if a
node temporarily fails. Indeed, for such an occur-
rence, the corresponding parameters an, Tnm, m = 1,
..N, are set to zero, and the inequalities (21-a, 21-b)
continue to be satisfied.

6. Application
We now illustrate the dynamic behavior of the GH
model for an associative memory problem. Fully
connected networks of sizes varying by several
orders of magnitude were studied. We find that the
sequential asynchronous updating algorithm leads to
the slowest convergence to a stored memory. The
synchronous update leads to the fastest rate of
convergence. Note, however, that for large−scale
systems that have to be implemented on
high−performance parallel computers, or for

 5

device−level implementations, strict clock synchro-
nization mechanisms are required to implement this
paradigm. This, in turn, leads to significant
degradation of the real-time performance of the
system. For concurrently asynchronous updating, we
observe that, in absence of proper conditioning (as
specified by Eq. (21) above), networks exhibit
sustained oscillations and convergence to spurious
memories. However, when the requirements of
Eq.(21) are satisfied, convergence to the correct
stored attractors is achieved despite large
communication delays (for instance, up to 2000∆)
and globally inconsistent state information, i.e.,
neurons operate using the latest information locally
available to each of them, which differs from the
actual states on the network.

The illustrations shown below refer to a network of 8
neurons. They display the network behavior under
different time delays and parameter settings for an
associative memory problem. Patterns are 8-
dimensional vectors. Thus, a typical stored memory
(pattern) would look like (+1, +1, −1, −1, −1, −1,
+1, −1). Note that component values were set to
±0.8 rather than ±1 to avoid the asymptotic region
of the sigmoid transfer function. A typical input
probe would look like (+0.7, +0.9, −0.5, −0.7, −0.4.
−0.9, +0.3, −0.8).

Each figure comprises four quadrants. The upper left
region indicates the frequency of sign changes (zero
crossings) in the state of a neuron over an interval of
100∆. The upper right region shows the absolute
magnitude of neuronal activities as they evolve in
time. The lower left region plots all neuronal
activities against the activity of neuron V2 (the
second of the 8 neurons).

Figure 1. System evolution under concurrently synchro-
nous updating.

Finally, the lower right region displays the temporal
evolution of the Euclidean distance between the
current state components and the stored memory to
which they are expected to converge.

Figure 2. System evolution under concurrently asynchro-
nous updating with two ill-conditioned neurons.

Figure 3. System evolution under concurrently asynchro-
nous updating with large time delays.

Here, Fig. 1 illustrates the concurrently synchronous
dynamics, i.e., an idealized situation in which no
delays occur in information propagation between
neurons. Figure 2 illustrates the aperiodic oscillations
that arise when the stable dynamical bounds,
specified by Eq. (21), are violated by 2 neurons (V1
and V4). Finally, Fig. 3 illustrates convergence under
concurrently asynchronous conditions, with propa-
gation delays up to 100∆.

In addition to the prevalent notions on instability in
neural networks that attribute oscillatory behavior
mainly to the topology of the synaptic inter-

 6

connection matrix [7], we were able to demonstrate
that it can be a manifestation of emergent computa-
tional chaos. An analysis of the Lyapunov spectrum,
computed from the time series that follows the
evolution of the average component difference from a
stored memory, gave the following indications. For
an ill-conditioned model (e.g., ∆ = 0.002, a= 1000.,
γ = 10,000., and ∑ |Tnm | = 84.) the largest
Lyapunov exponent was found to be + 1.49. The
same calculations, performed for a concurrently
asynchronous (contracting) system (e.g., ∆ = 0.002,
a= 100., γ = 1.) produces a value of − 1.09 for the
largest exponent, thereby preventing the emergence
of computational chaos.

7. Conclusions
The biggest promise of artificial neural networks as
computational tools lies in the hope that they will be
able to emulate the information processing capa-
bilities of biological systems. Their paradigmatic
advantages (i.e., their inherent ability to perform
distributed, massively parallel, asynchronous
information processing) cannot, however, be fully
realized under the existing neurodynamics relaxation
schemes. In particular, full (concurrent) asynchro-
nicity has not been used to date, since it often
engenders computational chaos. In this paper, we
have derived conditions that ensure that
computational chaos does not occur. These
conditions are invariant with respect to a change of
the number of nodes (neurons) during the
computation process.

The new methodology was illustrated on an associa-
tive memory application modeled via the Grossberg–
Hopfield formalism. The Lyapunov exponents were
calculated to characterize the network dynamics. For
concurrently asynchronous algorithms, we observed
the emergence of computational chaos in the absence
of proper conditioning. When network design obeyed
the constraints derived in this paper, robust operation
was demonstrated. It resulted in convergence to the
correct memory patterns even in the presence of
considerable inter-node communication delays.

ACKNOWLEDGEMENTS
This research was performed at the Center for
Engineering Science Advanced Research, Computer
Science and Mathematics Division, Oak Ridge
National Laboratory. Funding was provided by the
Material Science and Engineering Division of the
DOE Office of Science under contract DE-AC05-
00OR22725 with UT - Battelle, LLC.

References
1. M. Hassoun, Fundamentals of Artificial Neural

Networks, MIT Press (1995).

2. C. Marcus and M. Westervelt, “Stability of analog
neural networks with delay”, Phys. Rev. A 39, 347-
359 (1989).

3. K. Yamanaka, M. Agu, and T. Miyajima, “A
continuous-time asynchronous Boltzmann machine”,
Neural Networks, 10, 1103-1107 (1997).

4. R. VanRullen and S. Thorpe, “Spatial attention in
asynchronous neural networks”, Neurocomputing, 26-
27, 911-918 (1999).

5. M. Benson and J. Hu, “Asynchronous self-organizing
maps”, IEEE Trans. Neural Networks, 11(6), 1315-
1322 (2000).

6. J. Matsuoka, Y. Sekine, K. Saeki, and K. Aihara,
“Analog hardware implementation of a mathematical
model of an asynchronous chaotic neuron”, IEICE
Trans Fundamentals, E 85-A, 389-394 (2002).

7. K. Cheung, L. Atlas, and R. Marks, “Synchronous
versus asynchronous behavior of Hopfield’s CAM”,
Applied Optics, 26, 4808-4813 (1987).

8. J. Hopfield, “Neurons with graded response have
collective computational properties like those of two-
state neurons”, Proc. Nat. Acad. Sci., 91, 3088-3092
(1984).

9. N. Toomarian and J. Barhen, “Learning a trajectory
using adjoint functions and teacher forcing”, Neural
Networks, 5, 473-484 (1992); ibid, “Fast temporal
neural learning using teacher forcing”, U.S. Patent No.
5,428,710 (June 1995); ibid, “Neural Networks
Training by Integration of an Adjoint System of
Equations Forward in Time”, U.S. patent No.
5,930,781 (July 1999).

10. D. Chasan and W. Miranker, “Chaotic relaxations”,
Linear Algebra & Applic., 2, 199-222 (1959).

11. C. Mead, Analog VLSI and Neural Systems, Addison-
Wesley (1989).

12. J. Shamir, “Fundamental speed limitations on parallel
processing”, Applied Optics, 26, 1567-1568 (1987).

13. B. Macukow and H. Arsenault, “Modification of the
threshold condition for a content addressable memory
based on the Hopfield model”, Applied Optics, 26, 34-
36 (1987).

14. J. M. Ortega and W. C. Rheinboldt, Iterative Solution
of Nonlinear Equations in Several Variables,
Academic Press (1970).

15. G. M. Baudet, “Asynchronous Iterative Methods for
Multiprocessors”, Jour. ACM, 25, 226-244 (1983).

