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Abstract. One of the primary advantages of artificial 
neural networks is their inherent ability to perform 
massively parallel, nonlinear signal processing. 
However, the asynchronous dynamics underlying the 
evolution of such networks may often lead to the 
emergence of computational chaos, which impedes 
the efficient retrieval of information usually stored in 
the system’s attractors. In this paper, we discuss the 
implications of chaos in concurrent asynchronous 
computation, and provide a methodology that 
prevents its emergence. Our results are illustrated on 
a widely used neural network model. 
 

1. Introduction 
Artificial neural networks are massively parallel, 
adaptive dynamical systems [1]. Their models are 
inspired by the general features of biological 
networks. In such networks, asynchronous behavior 
is prevalent. It arises from delays in nerve signal 
propagation, refractory periods, and adaptive 
thresholding [2]. Recently, there has been conside-
rable interest in better understanding and exploiting 
the computational properties of asynchronous 
neurocomputing models (see [3-6] and references 
therein). 

From an algorithmic perspective, two regimes have 
traditionally been considered for updating quantities 
of interest [7-9]. In the synchronous regime, all nodes 
simultaneously update their state variables. This 
implies that each node must receive, within the 
interval ∆ characterizing the resolution of the 
discrete-event network dynamics, all the necessary 
information it needs for its computation from all the 
nodes to which it is connected. In the asynchronous 
regime, only one node (usually determined randomly) 
is allowed to update its state on the basis of its inputs, 
and only after state information has been received 

from all required nodes. Clearly, this type of asyn-
chronicity limits the ability of a network to perform 
massively parallel, distributed information pro-
cessing. Hereafter, we will refer to this regime as 
sequentially asynchronous. To date, both paradigms 
still provide the algorithmic foundation of available 
computational models [3-6]. 

The true (concurrent) computational asynchronicity, 
however, implies an uncoordinated, system−wide 
activity. In that context, there is a strong motivation 
to develop algorithms that can fully exploit such a 
behavior. It should be noted, however, that 
asynchronous relaxation algorithms have long been 
known to give rise to computational chaos [10].  

In the sequel, we first discuss some implications of 
asynchronous computing. Then we provide a metho-
dology that prevents the emergence of computational 
chaos to enable efficient retrieval of information 
stored in attractors of the network. Finally, we 
illustrate our results in terms of the well established 
Grossberg−Hopfield model [8].   
 

2. Limitations of Previous Approaches.  
Several important limitations can be associated with 
the lack of concurrent capabilities for asynchronous 
computing in present models of artificial neural 
networks. These include problems encountered 
during: (1) VLSI, optical, or opto-electronic compu-
tations; (2) discrete time simulations on large−scale 
high−performance computers; and (3) emulation of 
biological systems. For instance, complex global 
synchronization circuitry is typically needed in VLSI 
circuits and optoelectronic devices to neutralize the 
clock skew effects arising from variation in the 
physical [11] and/or optical [12] path lengths of the 
actual synaptic interconnections. Not only does this 
circuitry lack biological basis, it also limits the 
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overall network performance to operate at the rate of 
the slowest neuron, and enforces rigid firing 
sequences that would be difficult to sustain due to 
signal leakages and component instability. It is well 
known [13] that in large−scale networks such 
self−induced pathological activation could destabilize 
the entire neuromorphic system. 

From a purely algorithmic perspective, let us con-
sider a synchronous algorithm implemented on an 
MIMD parallel computer. The processors associated 
to sets of neurons must communicate their partial 
results to each other, at every instance of time 
specified by the precedence−constrained task graph 
obtained from the problem decomposition. Such 
almost sequential algorithms produce overheads in 
the form of load imbalance due to processor 
inactivity. The potentially lower processor utilization 
then enhances resource contention due to 
communication and coordination requirements, and 
can lead to severe performance degradation in a real-
time network environment.  

Finally, from a biological emulation perspective, the 
current synchronous paradigm implies that neurons 
are not allowed to evaluate a firing threshold without 
having to wait to receive excitatory or inhibitory 
input signals from all other neurons to which they are 
connected. Failure to receive input from some 
inoperating node in the sequentially asynchronous 
case could lead to blocking of the entire network. 
Both alternatives are quite unacceptable. 
 

3.  Basic Concepts 
We begin by defining more precisely what we mean 
by concurrent asynchronous computation. Let N 
denote the total number of nodes (neurons) in the 
network. A quantity of interest, un(t), is being 
estimated at each node n, where t indexes a discrete 
temporal sequence. Let ϕ be a nonlinear operator 
from RN to RN, whose network components are 
expressed as ϕn(u1, u2, … uN). 

Definition. A concurrently asynchronous system 
iteration, denoted by the tuple {ϕ, u(0), ξ, ψ}, 
corresponding to the operator ϕ, and starting from a 
given vector of initial estimates u(0), is a sequence of 
state iterates u(t) of vectors in RN, obtained by the 
following recursion: 
   

1 1
(1)

( 1) if  
( )

( ( ( ),..., ( ( )) if  .
n t

n
n tN N

u t n S
u t

u x t u x t n S




− ∉
=

∈ϕ
 

Here, the sets xn(t) index the availability of the n-th 
node’s most recent updated state. The update 
configurations of the network are given by ψ = { 
x1(t), …, xN(t) | t = 1,2, …}. St denotes the set of 
nodes that carry out an update at the t-th time grid 
point. The set ξ ={ St | t = 1,2, …} is the sequence of 
nonempty subsets of nodes that performed an update 
at each t.  

Assumptions. Three operational assumptions are 
made. Two refer to the set ψ, and one constrains the 
set ξ. Specifically, we require: 

• Each consecutive update uses only state 
information previously available at the node 
under consideration, i.e.,  xn(t) ≤ t – 1. 

• More and more recent state information must be 
used in evolving the set of nodes; in other words, 
xn(t) considered as a function of t tends to 
infinity as t tends to infinity. 

• Node n is not starved in ξ, i.e., there exists a 
finite natural number s ∈N, such that each node 
updates its estimate at least once in every s 
successive time intervals.  

 
The above definition provides a formal framework 
for algorithms that implement concurrent, asynchro-
nous network dynamics. Such a dynamics is capable 
of updating the nodes in an uncoordinated manner, 
where the neurons are seen as a collection of 
functionally cooperating processes, with no explicit 
dependencies to enforce waiting at synchronization 
points for the purpose of swapping partially 
computed results. Since the ensuing dynamics may 
become chaotic, additional tools are needed to 
guarantee that correct results are ultimately obtained. 
These tools are presented next. 
 

4.  Contraction Theorems 
The concept of contraction [14] plays a fundamental 
role in the iterative solution of nonlinear equations. It 
is most useful to express contraction in terms of 
vector norms, which induces a partial ordering on 
RN. 

Definition.  An operator ϕ: D ⊂ RN → RN is 
called a Φ-contraction on a set D0 ⊂ D, if there exists 
a linear operator Φ ∈ L(RN) with the following 
properties: 
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The first property implies Lipschitz continuity. 
Indeed, Φ is often referred to as the Lipschitz matrix 
of  ϕ. The latter requirements, namely non-negativity 
and spectral radius of Φ, generalize the typical 
specification of the contractive constant used in 
conjunction with the usual norm on RN. The 
existence of a fixed point is then given by the 
following theorem. 

Contraction Mapping Theorem.  Suppose 
that ϕ: D ⊂ RN → RN is a Φ-contraction on the 
closed set D0 ⊂ D, such that ϕ(D0) ⊂ D0. Then, for 
any u(0) ∈ D0, the sequence 
 

  0,  1,  2,  ... (3)( 1) = ( ( ) ) tt t =+u uϕ
 
converges to the unique fixed point (denoted u(∞) ) 
of ϕ in D0, and the following error estimate holds for 
t = 0,1,2, …: 

(4)| ( 1) ( ) | (  ( ) ( 1) | . t t t+ − ∞ ≤ − − −u u I u u−1Φ) Φ |
 
These concepts can be applied to study the 
convergence of concurrently asynchronous time-
evolving processes in general, and neural networks in 
particular. In that context, a theorem by Baudet [15] 
is of particular relevance.   
Baudet’s Theorem. If ϕ: RN → RN is a Φ-
contraction on the closed subset D ⊂ Rn, and if ϕ(D) 
⊂ D, then any concurrent asynchronous iteration 
corresponding to ϕ and starting with a vector u(0) ∈ 
D, converges to a unique fixed point of ϕ on D. 

We will now apply these concepts to neurocompu-
ting. For illustrative purposes, we will focus on the 
Grossberg−Hopfield (GH) network.  
 
5.  Asynchronous Neurocomputing 
Consider the temporal evolution of a fully connected, 
GH−type neurodynamical system [8]. Such a system 
is modeled by the following system of coupled, 
nonlinear differential equations: 

  . (5)( )n
n n nm m m m n

m

du
dt

a u T g u I+ = +∑ γ   

Here un represents the internal state of the nth neuron. 
The strength of the synaptic coupling from neuron m 
to neuron n is denoted by Tnm, and the external bias is 

denoted by In. The sigmoidal function gn modulates 
the neural response, γn denotes the gain of the 
transfer function of the nth neuron, and an represents 
the inverse of a characteristic time constant or a 
decay scaling term. To create a discrete event 
formalism, we replace the time derivative of un with a 
first order finite difference representation. We select 
the explicit (forward) Euler scheme,  
 

, (6)( 1) ( ) ) /(n
n n

du
u t u t

dt
≅ + − ∆  

despite its simplicity and occasional inadequacy, in 
order to illustrate an intriguing property of 
asynchronous computation. Indeed, it is well known 
that the forward differencing Euler scheme does 
usually not yield a correct integration of differential 
equations, except for very small discretization (time) 
steps ∆. Hereafter, we will show that under 
concurrent asynchronous processing, even for 
arbitrarily large but finite time delays (e.g., of the 
order of hundreds of ∆’s), correct convergence to the 
attractors of the dynamical system (5) is achieved 
under appropriate constraints on the model 
parameters.  

Let ϕn(u) denote the nth component of the GH 
operator obtained from Eq. (5) using the 
discretization scheme (6). We have  
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We seek convergence to fixed-point attractors of (5). 
For any two phase-space points u and v in a domain 
of attraction, we can write 
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Taking the vector norm, we obtain 
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We assume that, for each neuron, the transfer 
function gn: R → [-1, +1] is of class C 1, and that 
| | 1ng ′ ≤ . This is indeed the case for the neural 
response functions usually considered, i.e., 
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Then, the Mean Value Theorem implies that there 
exists a number z ∈ R such that 
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Regrouping all terms, we obtain 
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Let us now define a matrix Φ in the following 
manner: 
     

(14)| | | | | | .1nm nm mnmn Ta= + ⋅−∆ ∆Φ δ γ
 

We see that, by definition, Φ is non-negative. Consi-
dering Eqs. (13−14), we observe that 
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m
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or, equivalently 
 
  | (16)( ) ( ) | | .−− ≤ ⋅u v u vΦ|ϕ ϕ  

Thus, the GH operator ϕ is Lipschitzian with 
Lipschitz matrix Φ. From Baudet’s theorem, for ϕ to 
converge to a fixed point in an appropriate basin of 
attraction, the spectral radius of Φ must be less than 
one. Our basic idea, here, is to use this requirement to 
establish constraints on the model parameters. In 
order to produce an operational statement, we invoke 
the Beckenbach – Bellman theorem [14]. For any 
vector y with positive components, we can write: 
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In particular, we can choose all vector components yn 
to be equal. The contraction requirement, ρ(Φ) ≤ 1, 
then translates into 
   

1
1

max 1. (18)
m N

n N nm
m

=

≤ ≤
=

<∑Φ  

Recalling equations (2-b) and (14), we see that the 
above inequality induces constrained inter-

relationships between the values of the model 
parameters an, ∆, γn, and Tnm (with n, m = 1...N). 
Explicitly, one obtains 
  
max (19)| | (| | | |) } 11n

m
nm mn Ta∆ +∆ ⋅ <− ∑{ γ
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It is important, at this stage, to emphasize that the 
reader should not confuse arbitrarily large (but finite) 
delays with large values of ∆. If that were the case, 
Eq. (19-20) would require arbitrarily small values for 
γn, the system would become almost linear, and chaos 
would be excluded by definition. In our paradigm, 
delays are handled in the framework of a set-theoretic 
formalism (they appear implicitly in the set ξ). Thus, 
we allow for arbitrarily large delays, without 
affecting the structure of the dynamical system.   

To fix the ideas, and without loss of generality, let us 
consider the simplest situation where all gain 
parameters γn are positive, equal and set to γ. Then, 
convergence of the concurrently asynchronous 
dynamics of the GH model will be guaranteed if the 
parameters satisfy the following relationships. 
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We note that these conditions, once ensured, do not 
have to be changed during the calculations, even if a 
node temporarily fails. Indeed, for such an occur-
rence, the corresponding parameters an, Tnm, m = 1, 
..N, are set to zero, and the inequalities (21-a, 21-b) 
continue to be satisfied.  
 
6.  Application  
We now illustrate the dynamic behavior of the GH 
model for an associative memory problem. Fully 
connected networks of sizes varying by several 
orders of magnitude were studied. We find that the 
sequential asynchronous updating algorithm leads to 
the slowest convergence to a stored memory. The 
synchronous update leads to the fastest rate of 
convergence. Note, however, that for large−scale 
systems that have to be implemented on 
high−performance parallel computers, or for 
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device−level implementations, strict clock synchro-
nization mechanisms are required to implement this 
paradigm. This, in turn, leads to significant 
degradation of the real-time performance of the 
system. For concurrently asynchronous updating, we 
observe that, in absence of proper conditioning (as 
specified by Eq. (21) above), networks exhibit 
sustained oscillations and convergence to spurious 
memories. However, when the requirements of 
Eq.(21) are satisfied, convergence to the correct 
stored attractors is achieved despite large 
communication delays  (for instance, up to 2000∆)  
and globally inconsistent state information, i.e., 
neurons operate using the latest information locally 
available to each of them, which differs from the 
actual states on the network. 

The illustrations shown below refer to a network of 8 
neurons. They display the network behavior under 
different time delays and parameter settings for an 
associative memory problem. Patterns are 8-
dimensional vectors. Thus, a typical stored memory 
(pattern) would look like (+1, +1, −1, −1, −1, −1, 
+1, −1). Note that component values were set to 
±0.8 rather than ±1 to avoid the asymptotic region 
of the sigmoid transfer function. A typical input 
probe would look like (+0.7, +0.9, −0.5, −0.7, −0.4. 
−0.9, +0.3, −0.8). 

Each figure comprises four quadrants. The upper left 
region indicates the frequency of sign changes (zero 
crossings) in the state of a neuron over an interval of 
100∆. The upper right region shows the absolute 
magnitude of neuronal activities as they evolve in 
time. The lower left region plots all neuronal 
activities against the activity of neuron V2 (the 
second of the 8 neurons).  

Figure 1.  System evolution under concurrently synchro-
nous updating. 

Finally, the lower right region displays the temporal 
evolution of the Euclidean distance between the 
current state components and the stored memory to 
which they are expected to converge. 

 

Figure 2.  System evolution under concurrently asynchro- 
nous updating with two ill-conditioned neurons. 

 

Figure 3.  System evolution under concurrently asynchro- 
nous updating with large time delays. 

Here, Fig. 1 illustrates the concurrently synchronous 
dynamics, i.e., an idealized situation in which no 
delays occur in information propagation between 
neurons. Figure 2 illustrates the aperiodic oscillations 
that arise when the stable dynamical bounds, 
specified by Eq. (21), are violated by 2 neurons (V1 
and V4). Finally, Fig. 3 illustrates convergence under 
concurrently asynchronous conditions, with propa-
gation delays up to 100∆.  

In addition to the prevalent notions on instability in 
neural networks that attribute oscillatory behavior 
mainly to the topology of the synaptic inter-
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connection matrix [7], we were able to demonstrate 
that it can be a manifestation of emergent computa-
tional chaos. An analysis of the Lyapunov spectrum, 
computed from the time series that follows the 
evolution of the average component difference from a 
stored memory, gave the following indications. For 
an ill-conditioned model (e.g., ∆ = 0.002, a= 1000.,  
γ = 10,000., and ∑ |Tnm | = 84.) the largest 
Lyapunov exponent was found to be + 1.49. The 
same calculations, performed for a concurrently 
asynchronous (contracting) system ( e.g., ∆ = 0.002, 
a= 100.,  γ = 1.) produces a value of  − 1.09 for the 
largest exponent, thereby preventing the emergence 
of computational chaos.   
 
7.  Conclusions  
The biggest promise of artificial neural networks as 
computational tools lies in the hope that they will be 
able to emulate the information processing capa-
bilities of biological systems. Their paradigmatic 
advantages (i.e., their inherent ability to perform 
distributed, massively parallel, asynchronous 
information processing) cannot, however, be fully 
realized under the existing neurodynamics relaxation 
schemes. In particular, full (concurrent) asynchro-
nicity has not been used to date, since it often 
engenders computational chaos. In this paper, we 
have derived conditions that ensure that 
computational chaos does not occur. These 
conditions are invariant with respect to a change of 
the number of nodes (neurons) during the 
computation process. 

The new methodology was illustrated on an associa-
tive memory application modeled via the Grossberg–
Hopfield formalism. The Lyapunov exponents were 
calculated to characterize the network dynamics. For 
concurrently asynchronous algorithms, we observed 
the emergence of computational chaos in the absence 
of proper conditioning. When network design obeyed 
the constraints derived in this paper, robust operation 
was demonstrated. It resulted in convergence to the 
correct memory patterns even in the presence of 
considerable inter-node communication delays. 
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