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Parallel streams and the flow-control adaptation have been proposed as methods
for overcoming the throughput limitations of existing transport protocols. While
these methods have been very effective in simulations and implementations, only
a few high-level explanations exist in understanding the actual network conditions
that give rise to the performance improvements. By utilizing qualitative models
for TCP and a generic simulation scenario, we demonstrate the conditions under
which each of the techniques excels. In short, parallel streams perform best when
the network suffers from high packet-loss conditions while the adaptation of flow-
control windows performs best under low packet-loss rates.

1 Introduction

Many high-performance network applications use only a small fraction of the
available network bandwidth, particularly over large Bandwidth-Delay prod-
uct (BDP) network connections. Obtaining a larger fraction of the available
bandwidth, and hence closing the wizard gapa, generally requires network
and systems experts to tune end-host software, and potentially, institutional
firewalls. To close this gap, network researchers have proposed two generic
classes of adaptation techniques for TCP: (a) parallel TCP ?, PSockets 9, and
multiple paths 7, and (b) tuning of buffer sizes via dynamic right-sizing 1,
auto-tuning 8, net100 6, and ENABLE 10 to optimize a single stream.

Although the above techniques are available as individual modules and
have even been integrated into tools such as GridFTP 2, they can actually
degrade performance if inappropriately deployed. For instance, transfers be-
tween Stanford Linear Accelerator Center (SLAC) and University of Wiscon-
sin demonstrate that parallel TCP streams offer better throughput than tuned
buffers. In stark contrast, transfers between SLAC and Rice University ben-

aThe wizard gap is the difference between the network performance that a network “wizard”
can achieve by appropriately tuning buffer sizes and that of an untuned application.
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Figure 1. Simulation set-up.

efit most from tuned buffers rather than parallel streams. Finally, transfers
between SLAC and Los Alamos National Laboratory (LANL) provide optimal
throughput when an appropriate combination of the two is used. Therefore, a
qualitative understanding of the network conditions under which each of the
techniques delivers the best performance is critical to applications that rely
on networks with large BDPs.

In this paper, we will focus on parallel TCP and tuning of buffer sizes
via dynamic right-sizing (DRS). Parallel TCP uses parallel connections while
DRS automatically tunes the flow-control buffers. By adopting an appropri-
ate model for TCP, we will demonstrate that parallel TCP offers throughput
advantages over DRS in the following cases: (1) the slow-start phase of TCP,
(2) the fast recovery phase of TCP, and (3) when packet-loss rates are high.
On the flip side, a tuned DRS stream achieves better throughput in high-
bandwidth, low-loss environments, e.g., Abilene and Internet2. For instance,
by setting the flow-control window to a value slightly below the bottleneck
bandwidth, a tuned connection provides a smooth flow (i.e., relatively con-
stant bandwidth) as opposed to the sawtooth-like flow typical of TCP. For
parallel TCP, the sawtooth profile is particularly pronounced, which in turn,
leads to throughput levels well below the bottleneck bandwidths. Finally, we
discuss ways to combine the two techniques to reap the benefits of both.

Figure 1 shows the network topology used in ns-2 simulations to perform
our experiments. Source nodes 0 and 1 generate TCP and UDP traffic, re-
spectively, that goes to a drop-tail router over 2.0 Mbps links and then to a
bottleneck link of 1.7 Mbps before reaching the destination. Source node 1
generates UDP traffic at a constant bit rate (CBR) and serves as the back-
ground traffic that the TCP connection must adapt to.
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2 Macroscopic View of a Single TCP

Two parameters control the transport process in TCP: the flow-control win-
dow and congestion-control window, denoted by FS(t) and CS(t), respec-
tively, as functions of time t. Here the suffix S denotes a single TCP
stream. The throughput given by the rate of packets transmitted is ηS(t) =
min{FS(t), CS(t)}. For typical TCP implementations, F (t) is fixed at the
initiation of the connection between source and destination.

Figure 2 shows the congestion window of the TCP connection correspond-
ing to UDP CBR rates 0, 0.5, 1.0, and 1.5 Mbps. In the top-left figure, the
flow-control window keeps the throughput below the bottleneck bandwidth
of 1.7 Mbps, and hence no losses are encountered, resulting in monotonically
increasing congestion window. As the volume of UDP traffic increases, the
aggregate UDP and TCP throughput demands oftentimes exceed 1.7 Mbps,
resulting in packet losses. In response to each packet loss, TCP reduces its
congestion window in half and re-enters its congestion-avoidance mode where
the congestion window grows linearly in size.

Figure 3 presents aggregate throughput profiles when the corresponding
UDP CBR rates are 0, 0.5, 1.0, and 1.5 Mbps, respectively. In each graph,
the upper line represents the aggregate throughput emitted from the source
while the lower line captures the goodput at the destination. A source node
infers that a packet has been lost in the network via packet loss, timeout, or
duplicate acknowledgements.

Let T1, T2, . . . , Tp be the times at which a loss is inferred. Let rS(t) denote
the growth rate of the congestion window at t, where rS(t) is defined to be 0
when the congestion window decreases in size. Let T0 and Tmax be the start
and end times of the transmission from source to destination, respectively.

We first consider the case where the FS(t) per round-trip time is larger
than the bottleneck bandwidth Bτ between the source and destination. This
case corresponds to the top-right, bottom-left and bottom-right plots in Fig-
ure 3. Figure 4 shows that TCP dynamics can be visualized over two inter-
vals, [0, T SS

S ] and (T SS
S , Tmax], corresponding to the slow-start and congestion-

control phases, respectively. We follow the usual convention where [t1, t2] de-
notes the closed interval that includes the endpoints and (t1, t2) denotes the
open interval that excludes the endpoints.

The function rS(t) spans across two different sets of values, i.e., the fast
growth of slow start and the slow linear growth during congestion avoidance.
At high load, the congestion profile dominates because each inferred loss re-
duces CS(t) by a fraction, and multiple losses cause CS(t) to stay below FS(t),
as shown in the top-right, bottom-left and bottom-right plots of Figure 2.
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Figure 2. Congestion window profiles for UDP CBR rates of 0, 0.5, 1.0 and 1.5 Mbps, in

top-left, top-right, bottom-left and bottom-right plots, respectively. X-axis represents the

simulation time t in seconds and Y-axis represents CS(t).

Thus, for a single TCP, we have T SS
S = T1. While the exact values of rS(t)

vary somewhat within each phase, we approximate the rate in the slow-start
and congestion-control phases by rSS and rCC , respetively.

Let U[t1,t2](t), for t1 ≤ t2, denote the function which is 1 if t ∈ [t1, t2] and
0 elsewhere, then the growth rate of the congestion window for a single TCP
is rS(t) = rSSU[T0,T SS

S
](t) + rCCU(T SS

S
,Tmax](t) = rSSU[0,T1](t) + rCCU(T1,Tmax]

when flow windows are sufficiently large such that FS(t) > CS(t) for all t ∈
[T0, Tmax]. Note that in this case ηS(t) = CS(t) for all t ∈ [T0, Tmax].

If flow windows are smaller, then FS(t) affects ηS(t) the most such that
ηS(t) = FS for all t ≥ T1. Figures 5(a) and (b) demonstrate this phenomenon.
Suppose that FS(t) is much smaller than the bottleneck bandwidth Bτ , then
throughput is clamped by the FS(t). Hence, TCP does not cause overflow at
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Figure 3. Throughput profiles for UDP CBR rates of 0, 0.5, 1.0, and 1.5 Mbps in top-left,

top-right, bottom-left and bottom-right figures, respectively. X-axis represents the simula-

tion time t in seconds and Y-axis represents the throughput expressed in bits per second. In

each figure, top plot corresponds to the throughput of source 0 and bottom plot corresponds

to the goodput received at destination.
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Figure 4. Congestion window profile of TCP under congestion losses.
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Figure 5. Congestion window profiles of TCP under different loads.

the bottleneck links and does not infer loss. Thus the slow-start phase will be
prolonged until the threshold Cτ is reached, and then TCP switches to the
congestion control mode. But the latter will not have much effect on ηS(t)
which would have been already curtailed by FS . Let Tt be the earliest time
such that CS(t) ≥ FS . We have two cases: (a) if T1 > Tt, then rS(t) = rSS

for t ∈ [T0, Tt]; and (b) if T1 < Tt, then rS(t) = rSS for t ∈ [T0, T1] and
rS(t) = rCC for t ∈ [T1, Tt]. In summary, we observe two qualitatively differ-
ent behaviors in a single TCP stream:
(i) If the size of the flow window is small, ηS(t) consists of fast increase fol-
lowed by a constant flow. This behavior may be caused either by FS being
set low or by a low-loss rate with high bottleneck bandwidth. We refer to this
region as low-FS .
(ii) If flow window is large, ηS(t) consists of fast increase followed by a saw-
tooth profile due to TCP’s Additive Increase and Multiplicative Decrease
(AIMD) behavior. This behavior is due to high values for FS , high-loss rates,
or low bottleneck bandwidth. We refer to this region as high-FS .

3 Single and Parallel TCP

In contrast to the previous section, here we consider n parallel-TCP streams
in place of a single TCP stream. In the simulation, we increased the UDP
CBR rate from 0 to 1.75 Mbps and the corresponding throughputs are shown
for n = 1, 2, 3, 4 in Figure 6. The throughput of parallel TCP improves with
the number of streams as the UDP traffic increases. When the UDP traffic is
low, however, a single stream performs better.

When the UDP traffic rate is high, i.e., high-FS region, parallel TCP
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Figure 6. Throughput improvements due to parallel TCP. X-axis represents the UDP CBR

traffic in Mbps and Y-axis represents the goodput received at the destination in Mbps.

performs better than a single, tuned TCP stream. Conversely, when the UDP
traffic rate is low, i.e., low-FS region, the tuned TCP stream outperforms the
parallel TCP streams.

3.1 High FS Region

Initially, the losses inferred at times T1, T2, . . ., Tm affect many streams. Each
stream’s first loss causes its TCP to transition from slow start to congestion
control. The growth rate for parallel TCP is given by

rP (t) = nrSSU[T0,T1) + [(n − 1)rSS + rCC ]U[T1,T2] + . . . + nrCCU(Tn,Tmax].

The growth rates of a single TCP stream versus parallel TCP streams over
different intervals are as follows.

time interval Single TCP n Parallel-TCP
[0, T1] rSS nrSS

[T1, T2] rCC (n − 1)rSS + rCC

[T2, T3] rCC (n − 2)rSS + 2rCC

[Tn−1, Tn] rCC rSS + (n − 1)rCC

[Tn, TF ] rCC nrCC

In summary, the advantages of parallel TCP over a single (tuned) TCP
in the high-FS region are three-fold:
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(a) Robust and sustained slow start: It takes at least n losses for all
streams to transition into congestion-control mode. Thus, the duration of
slow start in parallel TCP is T SS

P = Tn in the worst case, which is significantly
larger than that of a single TCP given by T SS

S = T1.
(b) Faster slow start: For the duration of slow start [0, T SS

P ], the growth
rate for n parallel streams reduces by rSS − rCC with every inferred loss, as
shown in Table 3.1. Compared to the growth rate of rSS during the slow-start
period [0, T1] of a single TCP, the growth rate of parallel TCP is rP (t) = nrSS .

The average growth rate of parallel TCP is rP (t) 1
n

n∑

i=1

(n− i)rSS = n(n−1)
2 rSS .

(c) Faster recovery: After all streams enter congestion-control mode, n
streams recover at an aggregated growth rate of nrCC , offering a factor of n
improvement over a single TCP. Similar results are presented in 3,4.

3.2 Low FS Region

In this section, we consider the low-FS region, where the flow windows per
round-trip time (RTT) are significantly smaller than the bottleneck bandwidth
Bτ . As shown in Figure 6, if the same flow-window size is used for all streams,
the parallel streams compete with each other and induce losses because of
each other. As shown in the leftmost portions of Figure 6, this phenomenon
causes the overall throughput for parallel streams to drop below that of a
single TCP. The ideal case is to set the FPi

(t) = Bτ/n for all streams i, then
the throughputs are given as follows where tTBτ

is the earliest t such that
ηS(t) = Bτ :

Time Interval Single TCP n Parallel TCP
Growth Rate during [0, TBτ

] rSS nrSS

Throughput during [TBτ
, Tmax] Bτ/n Bτ

Now, compare the parallel TCP case to that of a single TCP with the
flow window (ideally) tuned to be just below Bτ . While both single and
parallel streams will eventually reach the optimal throughput of Bτ , the latter
reaches it quicker. However, for optimal throughput in parallel TCP, the sum
of the sizes of flow windows must be chosen to be slightly below Bτ . If
the number of streams and the flow-window sizes are not properly chosen,
additional streams can in fact result in throughput reduction. To understand
this phenomenon, consider two parallel streams obtained by adding a stream
to one with FS = Bτ − 1. The additional stream will result in loss at the
bottleneck link, and consequently, at least one of the streams reduces its
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Figure 7. Congestion profiles for flow-window sizes of 5, 20, 21, and 30 in top-left, top-

right, bottom-left and bottom-right plots respectively. X-axis represents the simulation time

t and Y-axis represents CS(t).

CS(t) by a multiplicative factor a. Assume that both streams equally share
the losses and that a = 1/4. Then, a straightforward computation shows that
the average throughput of these two TCP streams is approximately 7/8Bτ

whereas that of single TCP is approximately Bτ .

4 Dynamic Right-Sizing

As shown in Section 2, a fixed low value for FS makes TCP less responsive
to the available bandwidth as well as loss conditions, resulting in artificially
reduced throughput. By varying FS via dynamic right-sizing (DRS) 1, the
effect on throughput could be dramatic, as will be demonstrated here.
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Figure 7 shows the congestion-window profiles when the flow-window sizes
are FS = 5, 20, 21, 30 (expressed in packets), and Figure 8 shows the corre-
sponding throughputs. For FS = 20 the throughput is about 1.65 Mbps and
that for FS = 21 it is below 1.5 Mbps. This is explained by the qualitative
difference in the flow rates under the control of flow and congestion windows.
As shown in Figure 7, for FS = 20 the smooth flow is a result of control by the
flow window. For FS = 21, the flow is controlled by the congestion window
which oscillates around the optimal flow window, thereby resulting in a non-
smooth flow. In general, this interesting case occurs when FS(t) = FS,Bτ−

is just below the bottleneck bandwidth Bτ as shown in Figure 5(b). Here
CS(t) continues to grow since there will be no losess. But ηS(t) = ηS;Bτ−

(t)
grows until it reaches FS and stays constant. Increasing FS slightly above
the bottleneck bandwidth Bτ to FS;Bτ + will result in loses since ηS(t) > Bτ

for some t, which consequently reduces CS(t). Then, the throughput will be
subsequently reduced below Bτ and will be later increased to exceed Bτ , and
this behavior repeats. Let η̄S denote the average value of ηS(t) over the period
[T0, Tmax]. Thus we have η̄S;Bτ−

> η̄S;Bτ + although the flow window in the
latter case is larger, i.e. FS,Bτ−

< FS,Bτ+. For certain TCP implementations
the reduction in throughput when FS is increased above Bτ could be as much
as 25%. In general, if c is the multiplicative factor by which the window
size is reduced when a loss occurs, the resulting throughput is approximately
(1 − c/2)Bτ due to the sawtooth profile of TCP’s congestion control. Thus,
by ensuring FS(t) = FS,Bτ−

, we achieve smoother and higher throughput.
If FS is set too low, the available bandwidth is not fully utilized. But if FS

is too large initially, it leads to unnecessary losses in slow start especially if the
latency to the bottleneck link is high. In such a case, it will take some time for
the dropped packet to reach the source, and meanwhile TCP sends packets at
an increasing rate corresponding to rCC . DRS 1 achieves a balance by starting
FS(t) at a low value and increasing it carefully as the packets flow without
losses. This method allows FS(t) to track CS(t), and generally ensures that
flow windows are not the limiting factors to the throughput. Furthermore,
in slow-start phase, right-sizing encourages CS(t) to grow as fast as possible
without causing unnecessary buffer overflows at the bottleneck link. In the
case of sustained losses, CS(t) dips below FS(t) thereby backing off in response
to the increased traffic so as not to take unfair share of the bandwidth, and
the resultant performance is identical to the usual TCP.
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5 Right-Sizing Parallel-TCP Streams

We now first characterize the scenarios that are favorable to either parallel
TCP or DRS. Under high loads, the performance of DRS is the same as that
of a single TCP, and hence parallel TCP in place of a single TCP will pro-
vide better performance. Under low loss conditions, parallel TCP using fixed
values of FS has several disadvantages. If the number of parallel streams is
not suitably limited, the throughput will increase much faster than the sus-
tainable rate, resulting in unnecessary losses and subsequent reduction in the
throughput. This problem is particularly acute if FS is fixed to a large value
because the parallel streams increase their throughput at a much faster rate
during slow start. Dynamic right-sizing a single stream, on the other hand,
prevents the throughput from growing too fast to unsustainable levels. Also,
once the parallel TCP streams enter the congestion-control mode, such that
their total peak rate is above the available bandwidth, losses will result, which
will in turn will reduce the throughput rate. However, by right-sizing the flow
windows such that the total throughput of parallel TCP is slightly below the
available bandwidth, loses can be avoided and the available bandwidth can
be entirely utilized. Such right-sizing requires a delicate balance because the
available bandwidth could vary rapidly, and hence, it must be dynamically
inferred to adjust the flow windows.

If we consider replacing a single TCP stream with n parallel TCP streams,
each of which is dynamically right-sized, then the individual streams are
guided by the right-sizing during slow start from growing too fast. But at
the same time, in cases of loss, all the virtues of parallel TCP are preserved
during slow start. During high loss situations, the performance is identical to
that of parallel TCP.
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