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ABSTRACT 
 

A new methodology is developed for the prediction of RPV embrittlement 
that utilizes a combination of domain models and nonlinear estimators 
including neural networks and nearest neighbor regressions. The Power 
Reactor Embrittlement Database is used in this study. The results from newly 
developed nearest neighbor projective fuser indicate that the combined 
embrittlement predictor achieved about 67.3% and 52.4% reductions in the 
uncertainties for General Electric Boiling Water Reactor plate and weld data 
compared to Regulatory Guide 1.99, Revision 2, respectively. The 
implications of irradiation temperature effects to the development of radiation 
embrittlement models are then discussed. 

 
 
1. Introduction 
 
 There have been several domain models that capture various aspects of material 
behavior; these models are designed by the domain experts to capture various critical 
relationships. At the same time, conventional non-linear estimators - while requiring very 
limited domain expertise - can model relationships that are not readily apparent. 
Consequently, there has been a profusion of methods with complementary performance with 
no single method proven to be always better than all others. Our goal is to develop an 
effective methodology by combining the domain models with the nonlinear estimators 
including, neural networks and nearest neighbor regressions to exploit their complementary 
strengths. We have previously developed a large Power Reactor Embrittlement Database 
(PR-EDB) [1] for U.S. nuclear power plants.  Subsequently in cooperation with the Electric 
Power Research Institute, additional verification and quality assurance of the data were 
performed by the U. S. reactor vendors. PR-EDB is used in this study to predict the 
embrittlement levels in light water reactor pressure vessels. The results from newly developed 
nearest neighbor projective fuser indicate that our combined predictor achieved about 67.3% 
and 52.4% reductions in the embrittlement uncertainties for General Electric Boiling Water 
Reactor plate and weld data compared to Regulatory Guide 1.99, Revision 2, respectively. 
   
2. New Methodologies for Developing Radiation Embrittlement Models 
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2.1 Background 
 
 The complex nonlinear dependencies observed in typical material embrittlement data, 
as well as the existence of large uncertainties and data scatter, make the modeling of material 
behavior (such as embrittlement prediction) a difficult task. The conventional statistical and 
deterministic approaches have proven to result in large uncertainties, in part because they do 
not fully exploit the domain specific knowledge. The domain models built by researchers in 
the field, on the other hand, are not able to fully exploit the statistical and information content 
of the data. As evidenced in previous studies, it is unlikely that a single method, whether it is 
statistical, non-linear or domain model will outperform all others. Considering the complexity 
of the problem, it is more likely that certain methods will perform best under certain 
conditions. In this paper, we propose to combine a number of methods such as domain 
models, neural networks, and nearest neighbor regressions. The combined system has the 
potential to perform at least as well as the best of the constituents by exploiting the regions 
where the individual methods are superior. Such a combination of methods became possible 
due to recent developments in measurement-based optimal fusers [2-4] in the area of 
information fusion. 
 The problem of estimating nonlinear relationships from noisy data has been well 
studied in the area of statistical estimation [5]. The nonlinear statistical estimators such as the 
Nadaraya-Watson estimator and regressograms [6] essentially rely on the properties of 
regressions. While neural networks and statistical estimators are general, the domain models 
developed by the material scientists specifically capture the critical relationships in the data 
that are not easily amenable to general methods. Such models are typically based on a 
combination of linear and nonlinear models, which are carefully chosen through an 
understanding of experimental data. 
 Particularly among the models developed for embrittlement data, there is unlikely to be 
a single winner, and different models perform well under different conditions. By discarding 
one or more models, one stands the risk of not characterizing certain critical performance. We 
propose to combine various methods using isolation fusers [5]. The most important part of 
these fusers is that the combined system can be guaranteed to be at least as good as the best 
individual estimator with a specified probability. Furthermore, fusion of no proper subset of 
the models performs better than the fused system based on all models. This way the positive 
aspects of all individual estimators can be exploited without discarding any single estimator. 
The deployment of these fusers on various models will ensure that the fused model is at least 
as good as the best of the individual models, irrespective of their individual performances. 
However, the general results on fusers do not specify the actual performance gains that may 
be achieved in a particular application. We show here that significant performance 
improvements are indeed obtained by employing fusers to combine various embrittlement 
models. 
  
2.2 Approach 
 

We employ neural networks, nearest neighbor regressions, and domain models, based 
on the PR-EDB data, to predict the transition temperature shift of RPV materials, which is a 
measure of the material embrittlement. From past experience [7], the boiling water reactor 
data has larger uncertainty compared to the other power reactor data. In this study, we only 
focused on the boiling water reactor data. 

The first task is to create unbiased training and test sets. The General Electric (GE) 
boiling water reactors’ (BWR) surveillance data (listed in PR-EDB) were preprocessed and 
streamlined. The final processed GE BWR data were compared with that of the ASTM 
E10.02 subcommittee embrittlement database for consistency in the surveillance information, 
such as irradiation temperature, chemical composition, Charpy impact test data fitting 
methodology, and power time history, etc. The processed GE BWR data has essentially the 
same neutron fluences, chemistry, and irradiation temperature data compared to that of 



  

ASTM E10.02 database, with minor difference of transition temperature shift (within a few 
degree F). The GE BWR’s data values were then scaled to the interval [-1, 1] using a Linear 
Max/Min transformation. This ensures that no one component in the data dominates the 
parameter optimization scheme. Then the data were randomly partitioned into training and 
testing sets. 

The second task consists of determining a number of estimators for this problem. For 
each method, a criteria function and optimization routine will be selected that consistently 
produces stable results. For statistical estimators, we will follow the procedure described in 
the literature. For artificial neural networks (ANN), one hidden layer and eleven hidden nodes 
were chosen with 2000 epoch iteration. A random generator was used to generate the initial 
weights for ANN modeling. Four sets of ANN models were tested. We then combine the 
statistical and deterministic estimators using information fusion techniques.  

An optimal projective fuser [3] proposed earlier was based on the lower envelope of 
error regressions of the estimators. In most practical cases, however, the error regressions are 
not available and only a finite sample is given. Consequently this fuser is hard to implement 
and furthermore provides only asymptotic consistency. In this paper, we propose a projective 
fuser based on the nearest neighbor concept [8], which is easy to implement. The combined 
system is guaranteed to perform at least as well as the best of the constituents by exploiting 
the regions where the individual methods are superior. 

A novel methodology is developed here for inferring nonlinear relationships that are 
typical in material behavior prediction. A tool based on this methodology is also implemented 
for the embrittlement prediction of NPPs. This tool could be expanded and adapted for use in 
other areas in which nonlinear material properties are important, such as failure analysis of an 
earthquake event, airplane safety analyses, and others.  
 
2.3 Embrittlement Prediction Models 
 

In this section we briefly described various models used for embrittlement prediction, 
which will be combined in the next section. 
  

ORNL Embrittlement Prediction Models – The residual defects in materials due to 
neutron induced-displacement damage are a function of neutron energy, neutron flux, 
exposure temperature, and the material properties that determine how neutrons interact with 
atoms and how defects interact within the material [9]. Thus, temperature, neutron flux, 
neutron energy spectrum, and material composition and processing history all contribute to 
the radiation embrittlement process [10]. Insufficient consideration of these factors may result 
in misleading correlations and, thus, incorrect predictions of material state and material 
behavior, as well as incorrect end-of-life determinations. 

 The development of new embrittlement prediction equations [7,11] stem from a 
series of studies on radiation embrittlement models, such as Guthrie's model [12], Odette's 
model [13], Fisher's model [14], B&W Lowe's model [15], the French FIM model [16], etc., 
and several other parameter studies on the PR-EDB. Although the copper-precipitation model 
has been extremely successful in explaining many aspects of irradiation embrittlement, it is 
becoming increasingly evident that other elements also contribute to the embrittlement of the 
RPV steel, such as Ni, P, Mn, Mo, and S. Theoretically, all the impurities in low alloy steel 
are candidates to be included in the modeling. For example, C, Si, Mn, Mo, S, etc., were 
investigated in the test run, but including or excluding these elements did not affect the 
overall outcome of the statistical parameters significantly; therefore, these parameters (or 
elements) were not incorporated into final governing equations. Thus, Cu, Ni, and P were 
tentatively selected as key elements and were incorporated into the formula of the new 
prediction equations. Furthermore, the reason for separating weld and base metals is because 
the welds tend to show enhanced degradation, the welding process presents a possible region 
of physical and metallurgical discontinuity, and offers added chances for the introduction of 
defects and undesirable components or stresses. 



  

 A nonlinear-least-squares fitting Fortran program was written for this study. The 
development of the parameters for this new embrittlement model is based on statistical 
formulation chosen by computer iterations. To some extent, the physical mechanisms are 
embedded in the equations, such as the formulation of the fluence factor. Two new prediction 
models for the GE BWR data were developed, where the fluence rate effect was considered 
in the second prediction model and are described below:  
Model 1: 

Model 2 

 
where ∆RTNDT is the transition temperature shift in °F; and neutron fluence f is in unit of 
1019 n/cm² (E > 1 MeV), effective full power time, ti, is in hour, and Cu, Ni, P. are in wt %.  
The residuals, defined as “measured shift minus predicted shift,” for ORNL Model2 are 
illustrated in Figs. 1-2 for base and weld, respectively. 
 
 Regulatory Guide 1.99, Revision 2’s Model – The transition temperature shift of Reg. 
Guide 1.99, Rev. 2’s model [17] was also used in this study for comparison, which is 
described as below. 
 
  ∆RTNDT = (CF) f  ( 0.28 - 0.10 log f  ) 

 
where, ∆RTNDT is the transition temperature shift in °F, CF(°F) is the chemistry factor (given 
in the Table 1 and Table 2 of Reg. Guide 1.99, Revision 2), which is a function of copper and 
nickel content, and neutron fluence f is in unit of 1019 n/cm² (E > 1 MeV).  
 The residuals for Reg. Guide 1.99, Rev. 2’s model are illustrated in Figs. 3-4 for base 
and weld, respectively. 
 
 Eason’s Models – The developed embrittlement model by E. D. Eason et. al. (Eason’s 
model) [18], was used in this study. The Eason’s trend curve of transition temperature shift 
was developed based on the power reactor data, and is described below. The residual of 
Eason’s model are illustrated in Figs. 5-6 for base and weld, respectively. 
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ANN Models – An ANN is a parameterized nonlinear mapping from an input space to 

an output space [19]. An ANN realizes mapping from an m-dimensional input space to an n-
dimensional output space and will have m nodes in its input layer and n nodes in its output 
layer. A multi-layer ANN (ML-ANN) is the most common architecture. This architecture has 
additional layers of nodes between the input and output layers. The information from each 
input-layer node is fanned out to nodes in the layer hidden between the input and output 
layers. The information entering a node in any hidden or output layer is the weighted sum of 
all information leaving the layer below it in the hierarchy. The node performs a non-
linear/sigmoidal transformation on the weighted information it receives and fans out the 
result to all nodes in the layer above it in the hierarchy (except for the output layer). The 
weighting factors (weights) are free parameters that must be adjusted to some chosen criteria 
function using some optimization algorithm. In this way, ANNs are able to capture many 
higher-order correlations that may exist in the data. The relationship between the higher-order 
correlations produces a nonlinear mapping. This is the reason ANNs may offer a more 

Fig. 2.  ORNL Model 2 weld residuals. Fig. 1.  ORNL Model 2 base residuals. 
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Fig. 3.  R.G. 199/R2 base residuals. 
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Fig. 5.  Eason Model base residuals. 
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Fig. 4.  R.G. 199/R2 weld residuals. 

Fig. 6.  Eason Model weld residuals. 
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accurate prediction of material behaviors, embrittlement in this case. With methods like 
ANNs, one has a better tool to extract nonlinear relationships from embrittlement data to aid 
in the development of reliable maintenance and safety strategies and regulations in the 
nuclear industry. 

The backpropagation algorithm is used to train the network with the data [19]. The 
training process determines the weights of ANN to fit a suitable nonlinear map. The 
backpropagation’s flexibility in training an ANN is why it does a better job of modeling than 
linear regression, but this method has several weaknesses. The backpropagation algorithm is 
based on local descent and can get stuck in local minima, and as a result the predictive 
properties can be quite varied. Also, there are a number of tunable parameters such as starting 
weights and learning rates that have a significant effect on the weight computed by the 
backpropagation algorithm. Thus, when different ANN models are trained with the same 
backpropagation algorithm but with different starting weights and learning rates, the 
performance can be significantly different. These networks however can be fused to achieve 
the performance of the best ANN [4] creating a more robust architecture. 
 Six independent variables, namely, Cu, Ni, P, fluence, irradiation temperature, and 
effective full power time were used in the ANN models. A program written in C language 
was used in this study.  
 
 K-Nearest Neighbor Regression (K-NNR) Method – The nearest neighbor regression 
(NNR) [5] is also chosen to generate an embrittlement model. The algorithm is described 
below. Let x1, x2, x3,…,xn be a sequence of n independent measurements with known 
classifications, and x be the measurement to be classified. Among x1, x2, x3,…,xn, let the 
measurement with the smallest distance from x be denoted as x’. Then the nearest-neighbor 
decision rule assigns the classification of x’ to that of x. As for K-NNR, it assigns to an 
unclassified sample point the class most heavily represented among its K nearest neighbors to 
x. In this study we chose the first three nearest neighbors with properly weighted function to 
represent the unclassified sample. 
 Six independent variables, namely, Cu, Ni, P, fluence, irradiation temperature, and 
effective full power time were used in K-NNR models. A second test K-NNR model, 
excluding irradiation temperature from the fitting parameter, generated a nearly identical 
trend curve as that with irradiation temperature. A program written in C language was used in 
this study.  
 
2.4 Fusion of Embrittlement Models  
 
 The development of this model consists of identifying the error profiles of various 
estimators and the physical parameters of the underlying problem and designing the fusers for 
combining the individual estimators. Two types of information fusers were used in fuser 
model development, namely, linear fuser and nearest neighbor projective fuser.  
 Initially, we combined the statistical and deterministic estimators using the linear fuser, 
which is a special case of the isolation fusers [20]. The isolation fusers are shown to perform 
probabilistically as good as best estimator [5,21]. Given n estimators, f1(x),…, fn(x), the linear 
fuser is given by f(x)=w1f1(x)+…+wnfn(x), where w1…wn are the weights. We computed the 
weights for the fuser by minimizing the error of the fuser for the training set.  
 The projective fuser [8] based on the nearest neighbor concept was also implemented in 
the study. This fuser partitions the space of domain X into regions based on the nearest to the 
sample. For each region an estimator with the lowest empirical error is used to compute the 
function estimate for all points in the region. This fuser is easy to implement and provides 
finite-sample performance bounds under fairly general smoothness or non-smoothness 
conditions on the individual estimator.  
 The program was written in C where the solution is based on solving a quadratic 
programming problem. In this study, we utilized the linear fuser and nearest neighbor 
projective fuser to develop the embrittlement models, six parameters, namely, Cu, Ni, P, fast 



  

fluence, irradiation time, and irradiation temperature, were incorporated into model 
development. Eight different models were investigated including four neural network models, 
two ORNL models, the K-nearest neighbor regression method, and the Eason’s model. 
 
 ORNL Fuser Model I – Linear Fuser was implemented into Fuser Model I 
development. The results of the linear fuser model indicate that this newly developed 
embrittlement model has about 56.5% and 32.8% reductions in uncertainties for GE BWR 
base and weld data, respectively, compared to that of Reg. Guide 1.99, Rev. 2. These are 
substantial improvements on the embrittlement predictions for the reactor pressure vessel 
steels. The plots of information model residual and its two-sigma uncertainties for base and 
weld materials are illustrated in Figs. 7-8, respectively. 
 
 ORNL Fuser Model II – Fuser Model II is a simplified version of Fuser Model I, 
excluding the irradiation temperature from the fitting parameter and excluding the Eason’s 
model from the fusion modeling. The data scatter of residuals for Fuser Model II are 
essentially the same as that of Fuser Model I. The results of ORNL Fuser Model II indicate 
that it has about 55.2% and 28.8% reduction in uncertainties for GE BWR base and weld 
data, respectively, compared to that of Reg. Guide 1.99, Rev. 2’s model. This indicates that 
fuser model I has marginal improved performance compared to that of fuser model II. Thus, 
the impact of irradiation temperature on embrittlement modeling for the GE BWR 
surveillance data can be considered as secondary.  
 
 ORNL Fuser Model III – Nearest neighbor projective fuser was implemented in Fuser 
Model III development. The results of the projective fuser model indicate that it has about 
67.3% and 52.4% reductions in uncertainties for GE BWR base and weld data, respectively, 
compared to that of Reg. Guide 1.99, Rev. 2. These are significant improvements on the 
embrittlement predictions for the reactor pressure vessel steels. The plots of information 
model residual and its two-sigma uncertainties for base and weld materials are illustrated in 
Figs. 9-10, respectively. 
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Fig. 9.  Fuser Model III base residuals. 
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Fig. 10.  Fuser Model III weld residuals. 

Fig. 7.  Fuser Model I base residuals. 
 

Fig. 8.  Fuser Model I weld residuals. 
 



  

3. Discussion 
 
 The comparison of the performance of the embrittlement models, based on the two-
sigma uncertainty of residual values, is stated in Table 1. The Fuser Model III gave the best 
performance among all the embrittlement prediction models. ORNL embrittlement models 
indicate that ORNL Model II is superior to ORNL Model I by including irradiation time to 
simulate fluence-rate effect. Thus, the implication of a flux effect in BWR environment was 
revealed in the model development. 
 

Table 1 - Two-sigma uncertainty of the embrittlement models for GE BWR data. 
Parameters Two sigma of residual (°F) Embrittlement model 
Cu Ni φt ti Tc Base  

(64 points) 
Weld  
(48 points) 

Reg. Guide 1.99, Rev. 2 x x x   55.0 47.9 
ORNL Fuser Model I x x x x x 23.9 32.2 
ORNL Fuser Model II x x x x  24.6 34.1 
ORNL Fuser Model III x x x x x 18.0 22.8 
ORNL Model I x x x   39.6 41.8 
ORNL Model II x x x x  27.6 38.5 
Eason’s Model x x x x x 40.9 51.0 
K-NNR Model x x x x x 39.1 41.4 
ANN-4 Model x x x x x 56.4 78.8* 

*| Residual | > 100°F are not included in two-sigma uncertainty evaluation. 
 

The authors would like to point out that the fusion modeling developed here is based on 
GE BWR data, including 110 available sample data, where, Reg. Guide 1.99/R2 and Eason’s 
Model were developed based on both PWR and BWR surveillance data. Thus, the superior 
prediction by ORNL Fusion model compared to that of Reg. Guide 1.99/R2 and Eason’s 
models may be partially due to the subset of power reactor data used in the model 
development. However, by the same token, this study may also demonstrate the superiority 
and advantage of using subset data, for example, the vendor specific data, to develop power 
reactor embrittlement models. (The reason is explained in the next paragraph.) In general a 
large data set with similar characteristics or controllable parameters will generate a better 
trend prediction compared to its subset.  But a misleading trend curve can result from a large 
data set built upon different bases and uncontrollable parameters, revealed by its large 
uncertainty. 

The R.G. Guide 1.99/R2 was formulated based on Guthrie’s model and Odette’s model 
and no temperature effect was considered in embrittlement model development, where, the 
fluence factor (FF) and plates’ chemistry factor (CF) are from Guthrie’s model [17]. 177 
surveillance data were used in Guthrie’s model development, however, only 6 data are from 
BWR environment. Thus, BWR surveillance data may not be properly characterized from 
Reg. Guide 1.99/2’s model. From ASTM E10.02 database, the mean temperature and one 
standard deviation of BWR and PWR data are 540.3 ± 13.6°F and 545.7 ± 10.4°F, 
respectively. Therefore, from the irradiation temperature variability point, the sample 
temperature environment of PWR and BWR are comparable. Currently, there are four major 
commercial power reactor vendors in the U.S., namely, Westinghouse, General Electric, 
Babcock & Wilcox, and Combustion Engineering. Each vendor has its unique designs and 
specific operating procedures. There are significant problems associated with insufficient 
information, such as the detailed irradiation temperature of surveillance specimen and the 
thermal gradient within surveillance capsules, and the lack of data in particular regions of 
interests to characterize the vendor's service environments. About 64% of PR-EDB data is 
from Westinghouse; thus, the trend curve of all the four vendors’ data will closely resemble 
the Westinghouse reactor environment. Furthermore, B&W surveillance data appears to 
experience higher irradiation temperature (based on capsule melting wire) compared to other 



  

vendors., Combining low- and high-temperature data may bring further bias on top of bias 
from the modeling point. For example, from the trend curve of all the vendor data, the high 
irradiation temperature data shows negative bias (i.e. prediction model shows over-
prediction) and low irradiation temperature data show positive bias. However, the overall bias 
(or uncertainty) will cancel each other resulting in a misleading statistical outcome, such as 
means and uncertainty.  
 Eason’s model covers both PWR and BWR environment, where 96 BWR data were 
included in model development and coolant inlet temperatures were incorporated into 
governing equations to simulate temperature effect. In practice the coolant inlet temperature 
is incorporated into the embrittlement model to simulate the irradiation temperature for a 
pressurized light-water reactor. However, a past study [10] showed that a large bias can still 
be identified in Eason’s model for surveillance data from a higher irradiation temperature 
environment and the bias is similar to that of Regulatory Guide 1.99, Rev. 2 [17]. This may 
indicate that the coolant inlet temperature is not equivalent to the irradiation temperature 
experienced by the surveillance specimens. Furthermore, from this study on fuser models, 
neither including or excluding coolant inlet temperature has a significant impact on the trend 
curve, which may further support the above statement. 
 For surveillance data, significant deviations of the measured shift from the trend curve 
(i.e., more or less than 34°F for plate materials) should be considered as a warning flag 
pointing to a possible anomalous capsule environment. The large uncertainties are the result 
of errors in the overall environment description. But, limited attention has been given to 
characterizing the irradiation temperature environment of the surveillance specimens. In 
general, the neutron environment, fluence and flux, can be determined fairly accurately and 
possible effects from these sources are relatively small in a power reactor environment.  
However, the temperature of surveillance capsules environments still heavily rely on the 
measurement of the melting wire. A more detailed analytical investigation of specimen 
temperature is needed based on detailed neutronic and thermal-mechanical analysis for 
specific capsule and specimen loading configuration, to facilitate the RPV surveillance 
program in confidence. Thus, in the current trend curve development, the most likely reason 
for deviations from the trend curve is the specimen temperature.  
 To develop a global embrittlement model for U.S. power reactors an independent 
investigation of each subgroup (each vendor) is recommended. Upon completing the 
investigations, if substantial improvement is achieved for each subset based on the proposed 
methodology, then an information fusion technique will be utilized to integrate all the subset 
models into a global RPV embrittlement model.  
 
4. Conclusions 
 
 We described an information fusion method for the embrittlement prediction in light 
water reactor pressure vessels by combining domain models with neural networks, and 
nearest neighbor regressions. Our method resulted in 67.3% and 52.4% reduction in 2-sigma 
uncertainties compared to that of the Reg. Guide 1.99, Rev. 2’s model for base and weld 
materials, respectively. This new approach combines the conventional non-linear methods 
and model-based methods into an integrated methodology applicable for modeling material 
aging processes. This approach can potentially assist the nuclear industry on the issues of 
safety and lifetime extension of aging commercial nuclear power plants. By using a wide 
spectrum of methods, the proposed tool can potentially handle the subtle non-linearities and 
imperfections and serve as a calibration and benchmark for the existing models.  The 
predictions generated by our system have the potential for providing efficient, reliable, and 
fast results, and can be an essential part of the overall safety assessment of material aging 
research. 

Future improvements of the proposed method can be made using the k-fold cross 
validation method [21].  In this method data is partitioned into k blocks, of which k-1 of them 
are used as the training set and the remaining as the test set. This process is repeated for all k 



  

permutations of choosing the k-1 blocks for the training set. Thus, at the end of this exercise 
there are k accuracy estimates in terms of the average of test and training error. Using these k 
estimates we compute the average accuracy, variance and the confidence interval. Based on 
the results, one can assign weights to various blocks in proportion to test error. These weights 
will then be used in developing an i-neighbor version of the proposed fuser. More generally, 
the cross validation method can also be used to compare various methods in a statistically 
informative manner. 
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