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Abstract

By comparing the features of an object from a desired im-
age to features of the object in the current image, geomet-
ric relationships are exploited to enable a Euclidean recon-
struction from a homography matrix that relates the image-
space feedback to the position/orientation of the wheeled mo-
bile robot (WMR) in a local coordinate system. The infor-
mation obtained from the homography is used to develop
a kinematic controller that yields asymptotic regulation of
the position/orientation of a WMR system that is modeled
as an underactuated “kinematic wheel” subject to nonholo-
nomic constraints. The control design is facilitated by per-
forming the stability analysis in terms of the unmeasurable
camera/WMR Euclidean position. In contrast to many of the
previous homography-based visual servo controllers, the kine-
matic control law does not depend on the numerical estimation
of depth measurements. The control design is based on the
nonlinear model of the vision system and the mobile robot
system and is analyzed through a Lyapunov-based stability
analysis.

1 Introduction
Typically, wheeled mobile robots (WMRs) operate in environ-
ments that are either partially or completely unknown. Often
the environment is changing with time in an unknown man-
ner; hence, an intelligent sensor that can enable the robot to
navigate in these environments is well motivated. Given this
motivation, researchers initially targeted the use of sonar as
an intelligent sensor. Based on the fact that sonar has very
low-bandwidth capabilities, is subject to noise due to wave
scattering, can be detected by external agents, and so on, re-
searchers investigated the use of laser-based sensing. Although
laser sensors have a much higher bandwidth, they are still sub-
ject to noise and are externally detectable. Moreover, lasers
have a limited field-of-view, unless complexity such as rotat-
ing mirrors are incorporated in the sensor design. Given the
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shortcomings of laser and sonar-based navigation, researchers
investigated the use of camera-based systems (vision sensors).
Vision sensors can have a wide field-of-view, can have mil-
lisecond sampling rates, and can be easily used for trajectory
planning, and so on. However, some disadvantages of vision-
based sensing include lack of depth information, image occlu-
sion, low-resolution and the requirement for extensive data
interpretation (image recognition). Given the advantages and
disadvantages of the various sensors, some initial work tar-
geted the use of a fusion of various sensors to build a map of
the environment for WMR navigation (see [13, 15, 24, 25, 27]
and the references within).

Based on the success of image extraction/interpretation
technology and advances in control theory, more recent re-
search has focused on the sole use of the vision system for
navigating a WMR (although research related to laser and
multi-sensor fusion is still a very active area of research). For
example, using consecutive image frames and an object data-
base, the authors of [14] recently proposed a WMR tracking
controller based on monocular visual feedback. To achieve the
result in [14], Kim et al. linearized the system equations us-
ing a Taylor series approximation, and then applied Extended
Kalman Filtering (EKF) techniques. Also using EKF tech-
niques on the linearized kinematic model, the authors of [7]
used feedback from a monocular omnidirectional camera sys-
tem (similar to [1]) to enable wall following, follow-the-leader,
and position regulation tasks. In [12], Hager et al. used a
monocular vision system mounted on a pan-tilt-unit to gener-
ate image-Jacobian and geometry-based controllers by using
different snapshots of the target and an epipolar constraint.
As stated in [2], a drawback of the method developed in [12] is
that the system equations became numerically ill-conditioned
for large pan angles. Given this shortcoming, Burschka and
Hager [2] used a spherical image projection of a monocular
vision system to overcome the limitations of [12]. Specifi-
cally, teaching and replay phases were used to facilitate the
estimation of the unknown object height parameter in the
image-Jacobian by solving a least-squares problem. In [23],
Song and Huang, use spatiotemporal apparent velocities ob-
tained from an optical flow of successive images of an object to
estimate the depth and time-to-contact to develop a monoc-
ular vision “guide robot”. A similar optical flow technique
was also developed in [16]. In [9], Dixon et al. used feed-
back from an uncalibrated, fixed (ceiling-mounted) camera to
develop an adaptive tracking controller for a WMR that com-
pensated for the parametric uncertainty in the camera and the
WMR dynamics. In [26], Wang et al. exploited a rigid body

1



transformation to develop a visual servoing WMR tracking
controller (the regulation problem was not solved due to re-
strictions on the reference trajectory) that adapted for the
constant, unknown height of an object moving in a plane. In
[29] and [17], visual servo controllers were recently developed
for systems with similar underactuated kinematics as WMRs.
Specifically, Mahony and Hamel [17] developed a semi-global
asymptotic visual servoing result for unmanned aerial vehi-
cles that tracked parallel co-planar linear visual features while
Zhang and Ostrowski [29] used a vision system to navigate a
blimp.

Recently, a monocular 2.5 Dimensional (2.5D) visual servo
control methodology was developed in a series of papers by
Malis and Chaumette (e.g., [3, 4, 19, 20]). Specifically, 2.5D
visual servo exploits a combination of reconstructed 3D task-
space information and 2D image-space information in the con-
trol design. The 3D information is reconstructed by decou-
pling the interaction between translation and rotation com-
ponents of a Euclidean homography. As stated in [20], some
of the advantages of this methodology include: (i) an accu-
rate 3D model of the environment (or target image) is not
required, (ii) the image is guaranteed to remain in the cam-
era field-of-view, (iii) local minima can be avoided, and (iv)
singularities only exist in the image-Jacobian in degenerate
cases. Based on the observation that interaction between the
translation and rotation of images can result in slower tran-
sient performance due to inefficient camera motions, Deguchi
proposed two algorithms in [8] for a robot manipulator ap-
plication that decouple the rotation and translation compo-
nents using a homography and an epipolar condition. More
recently, Corke and Hutchinson [6] also developed a method
for decoupling the rotation and translation components from
the remaining degrees of freedom using a new hybrid image-
based visual servoing scheme. Unfortunately, the results given
in [3, 4, 6, 8, 18, 19, 20] assume that a constant estimate of
the depth information can be utilized in lieu of the exact value
(e.g., in [20], an off-line learning stage is required to estimate
the distance of the desired camera position to the reference
plane for a robot manipulator application). Motivated by the
desire to compensate for the aforementioned depth informa-
tion, [5] developed an adaptive kinematic controller for a ro-
bot manipulator application to ensure uniformly ultimately
bounded (UUB) set-point regulation of the image point errors
while compensating for the unknown depth information, pro-
vided conditions on the translational velocity and the bounds
on uncertain depth parameters are satisfied.

In this paper, asymptotic regulation of the posi-
tion/orientation of a WMR is achieved by exploiting a
homography-based visual servo control strategy inspired by
the work given in [3, 4, 19, 20]. By comparing the features
of an object in the desired image to features of the object in
the current image (obtained from an onboard camera), geo-
metric relationships are exploited to enable a Euclidean re-
construction from a Euclidean homography that relates the
image-space feedback to the position/orientation of the cam-
era/WMR in a local coordinate system. By decomposing the
homography into separate translation and rotation compo-
nents, measurable signals for the camera/WMR orientation
and the scaled Euclidean position are obtained. The control
objective for regulating the position/orientation of the WMR
is naturally defined in terms of the Euclidean space, however,
the Euclidean position error is unmeasurable. That is, the

Euclidean reconstruction is scaled by an unknown distance
from the camera/WMR to the target, and while the scaled
position is measurable through the homography, the unscaled
position error is unmeasurable. To overcome this obstacle,
a unique strategy is employed in which the kinematic con-
trol design is based on measurable 2D image-space informa-
tion and reconstructed 3D information. The control design
is facilitated by performing the stability analysis in terms of
the unmeasurable camera/WMR Euclidean position. In con-
trast to many of the previous homography-based visual servo
controllers, the kinematic control law developed in this paper
does not depend on the calculation of the depth measurements.
In contrast to visual servo methods that linearize the system
equations to facilitate EKF methods, the Lyapunov-based con-
trol design in this paper is based on the full nonlinear model
of the vision system and the mobile robot system.

2 Problem Formulation

The objective of this paper is to regulate the posi-
tion/orientation of a WMR relative to a fixed target observed
in the image-space. As illustrated in Figure 1, the origin of
the orthogonal coordinate system F attached to the camera is
coincident with the center of mass of the WMR. As also illus-
trated in Figure 1, the XY-axis of F defines the WMR plane of
motion where the X-axis of F is aligned with the front of the
WMR, and the Y-axis is parallel to the wheel axis. The Z-axis
of F is perpendicular to the WMR plane of motion. The lin-
ear velocity of the WMR along the X-axis is denoted by vc(t),
and the angular velocity ωc(t) is about the Z-axis. In addition
to F , another fixed orthogonal coordinate system, denoted by
F∗, is defined to represent the desired fixed position and ori-
entation of the camera relative to a target. Hence, the goal
is to develop a controller that will regulate the position and
orientation of F to F∗.

Y*

X*

Desired Position
& Orientation

F ∗Z*

X

Y

Current Position
& Orientation

F

ωc

vc

Z

Figure 1: Mobile robot coordinate systems

2.1 Camera Model

In this paper, we assume that target can be distinguished by
three points Oi, i = 1, 2, 3 that compose a plane, denoted
by π. The Euclidean position of point Oi expressed in the
coordinate frames F and F∗ is denoted by m̄i(t), m̄

∗
i ∈ R3,
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respectively, and is defined as follows (see Figure 2)

m̄i(t) ,
£
xi(t) yi(t) zi(t)

¤T
and m̄∗i ,

£
x∗i y∗i z∗i

¤T
.

(1)
Since the 3D Euclidean position of the points Oi are ob-

Z*

X*

Y*

X

Y
Z

q
mi

mi*
Oi

R

d*

d

n*

n

π

F

F ∗

Figure 2: Geometric relationship of the mobile robot system

served from the 2D image-space of the camera, we define
normalized position vectorsmi(t) ,

£
1 miy(t) miz(t)

¤T
,

m∗i ,
£
1 m∗iy m∗iz

¤T ∈ R3as follows
mi(t) ,

m̄i(t)

xi(t)
=

·
1

yi(t)

xi(t)

zi(t)

xi(t)

¸T

m∗i ,
m̄∗i
x∗i

=

·
1

y∗i
x∗i

z∗i
x∗i

¸T (2)

where the standard assumption is made that xi (t) and x∗i are
positive [20] (i.e., the target is always in front of the cam-
era). In addition to the normalized Euclidean position, each
of the points have an image-space representation, denoted by
pi(t), p

∗
i ∈ R3, given by

pi(t) ,
£
1 ui(t) vi(t)

¤T
p∗i ,

£
1 u∗i v∗i

¤T
.
(3)

The image-space coordinates given in (3) are related to the
normalized coordinates given in (2) by the following invertible
transformation

mi = A
−1pi m∗i = A

−1p∗i (4)

where A ∈ R3×3 denotes a constant, invertible matrix func-
tion of the intrinsic camera calibration parameters [20]. Since
the camera is assumed to be calibrated (i.e., the matrix A is
assumed to be known), mi(t) and m∗i can be calculated using
(4) from the known camera pixel-space vectors pi(t) and p∗i .
The main idea behind the current visual servoing strat-

egy is to extract 2D information from the environment using
the camera image, and then estimate 3D information through
a Euclidean reconstruction. The Euclidean reconstruction is
performed by exploiting the geometry between the features of
the target (image points) in the camera’s current image to the
desired image. Based on the geometric relationships, a homog-
raphy matrix can then be calculated to relate the projected 3D
position to the image-space position of the target [11, 20, 28].

For example, the geometric relationships between F and F∗
can be determined from Figure 2 where θ(t) ∈ R is the angle
between the axes X∗ and X, the unit vectors n(t), n∗ ∈ R3
are normal to the plane π expressed in F and F∗, respectively,
and d(t), d∗ ∈ R are the unknown, positive distances from the
origin of F and F∗ to the plane π along n and n∗, respec-
tively. Based on Figure 2, the following relationship can be
determined

m̄i = Rm̄
∗
i + q (5)

where R(t) ∈ SO(3) is the rotation matrix from F∗ to F given
by

R =

 cos θ sin θ 0
− sin θ cos θ 0
0 0 1

 (6)

and q(t) ∈ R3 is the translation vector from F to F∗ given by
q(t) =

£
qx(t) qy(t) 0

¤T
. (7)

Since d∗ is the projection of m̄∗i along n
∗, the following rela-

tionship can be determined

d∗ = (n∗)T m̄∗i . (8)

Using (8), the expression given in (5) can be rewritten as

m̄i = Hm̄
∗
i (9)

where the Euclidean homography H (t) ∈ R3×3 is defined as
follows

H , R+ q

d∗
(n∗)T . (10)

By using (6), (7), and (10), the Euclidean homography can be
rewritten as follows

H = [Hjk] =


cos θ +

qxn
∗
x

d∗
sin θ +

qxn
∗
y

d∗
qxn

∗
z

d∗

− sin θ + qyn
∗
x

d∗
cos θ +

qyn
∗
y

d∗
qyn

∗
z

d∗
0 0 1


(11)

where n∗ =
£
n∗x n

∗
y n

∗
z

¤T . Upon examination of the terms in
(11), it is clear that H(t) contains signals that are not directly
obtained from the vision system (e.g., θ(t), q(t), and d∗ are
not directly available from the camera image). However, the
six unknown elements of Hjk(t) ∀j = 1, 2, k = 1, 2, 3 can be
determined indirectly from the image coordinates by solving
a set of linear equations. Specifically, by using the definition
given in (2), the expression given in (9) can be rewritten as
follows

mi =

µ
x∗i
xi

¶
Hm∗i . (12)

By expanding (12), the following expressions can be obtained

1 =

µ
x∗i
xi

¶¡
H11 +H12m

∗
iy +H13m

∗
iz

¢
(13)

miy =

µ
x∗i
xi

¶¡
H21 +H22m

∗
iy +H23m

∗
iz

¢
(14)

miz =

µ
x∗i
xi

¶
m∗iz. (15)

After eliminating (15), the following two expressions can be
obtained

1 =
miz

m∗iz

¡
H11 +H12m

∗
iy +H13m

∗
iz

¢
(16)

miy =
miz

m∗iz

¡
H21 +H22m

∗
iy +H23m

∗
iz

¢
. (17)
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Given that (16) and (17) will be generated for each of the
three image points, a total of six equations will result. Given
the six equations, the six unknown elements of Hjk(t) ∀j =
1, 2, k = 1, 2, 3 can be determined. Based on the fact that
the elements of the homography matrix can be determined,
various techniques can now be applied [11, 28] to decompose

H(t) in terms R(t),
q(t)

d∗
, and n∗ in (10); hence, θ(t), n∗, R(t),

and
q(t)

d∗
can be calculated and used in the subsequent control

development. Note that while the ratio
q(t)

d∗
can be calculated,

the individual signals q(t) and d∗ are unmeasurable.

Remark 1 As stated previously, the homography-based visual
servo control development exploits geometric relationships ob-
tained from a desired image and the current image. Based on
the fact that two images are used in the development, some
heuristic parallels can be drawn between stereo-based vision
problems and the homography-based problem. For example, the
desired image obtained for the homography-based visual servo
control problem can be thought of as being obtained from a con-
stant, fixed (virtual) camera and the current image is obtained
from the physical camera attached to the WMR. By using the
virtual and physical camera images, a triangulation between
the cameras and the object can be formulated as in Figure 2
to develop the Euclidean reconstruction. This approach seems
similar to a stereo-vision approach; however, stereo-vision ap-
proaches require two physical cameras that have a known trans-
lation/rotation between the cameras.

2.2 Control Objective
The goal of ensuring that F coincides with F∗ is naturally
defined in terms of the Euclidean position/orientation of the
WMR. Specifically, the translation error between F and F∗,
denoted by et(t) ∈ R2, can be written for any of the image
points Oi, i = 1, 2, 3 as follows

et ,
·
etx
ety

¸
=

·
qx
qy

¸
=

·
xi
yi

¸
−
·

cos θ sin θ
− sin θ cos θ

¸ ·
x∗i
y∗i

¸
(18)

where (5), (6), and (7) have been utilized. The orientation
error between F and F∗, denoted by eo (t) ∈ R, can be written
as follows

eo(t) , θ(t) (19)

where θ was defined in (6). Based on the definitions of (18)
and (19), the control objective can be stated as ensuring that
et(t) and eo(t) are regulated to zero.

3 Control Development

3.1 Open-Loop Error System
To develop the kinematic controller, we first examine the open-
loop error system for the error signals et(t) and eo(t). To this
end, we take the time derivative of (18) and (19) as follows

·
ėtx
ėty

¸
=

·
ẋi
ẏi

¸
−
· − sin θ cos θ
− cos θ − sin θ

¸ ·
x∗i
y∗i

¸
θ̇

ėo = θ̇.

(20)

As stated in [8, 20], the time derivative of the Euclidean posi-
tion given in (1) can be determined as follows

·
m̄i = −v − ω × m̄i, (21)

where v(t),ω(t) ∈ R denote the linear and angular velocity of
the WMR expressed in F as

v(t) ,
£
vc(t) 0 0

¤T
(22)

ω(t) ,
£
0 0 ωc(t)

¤T
=
£
0 0 θ̇(t)

¤T
,

respectively. From the expression given in (1) and (21), the
Euclidean WMR velocity can be written in terms of the linear
and angular velocity as follows

ẋi = −vc + yiωc
ẏi = −xiωc.

(23)

After substituting (23) and (22) into (20), the following open-
loop error system for et(t) and eo(t) can be determined

ėtx = −vc + ωcety

ėty = −ωcetx
ėo = ωc

(24)

where (18) was utilized.

3.2 Control Design
Based on the form of (24) and the subsequent stability analy-
sis, the kinematic control inputs vc(t) and ωc(t) can be de-
signed in a similar manner as in [21] as follows

vc = kv
etx
x∗i

and ωc = −kω1eo + kω2
µ
ety
x∗i

¶2
sin (t)

(25)
where kv, kω1, kω2 ∈ R denote positive, constant control gains.
Although the control design given in (25) is well motivated by
the subsequent stability analysis, it is important to note that
the expressions for vc(t) and ωc(t) given in (25) cannot be im-
plemented due to the fact that et(t) and x∗i are unmeasurable.
We note that eo(t) can be calculated from the decomposed
homography matrix as follows

cos θ =
1

2
(tr (R)− 1) . (26)

Motivated by the desire to express the controller given in
(25) in terms of measurable signals, we substitute (18) into
(25) for the unmeasurable Euclidean position et(t) to obtain
the following expression

vc = kv

µ
xi
x∗i
− cos θ −m∗iy sin θ

¶
ωc = −kω1eo + kω2

µ
xi
x∗i
miy + sin θ −m∗iy cos θ

¶2
sin (t)

(27)
where (2) was utilized. In Appendix A, we illustrate that the

ratio
xi(t)

x∗i
can be written in the following form

xi
x∗i
=

(n∗)T m∗i
(n∗)T RTmi

h
1 + (n∗)T RT

³ q
d∗

´i
(28)
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where, as stated previously, n∗, R(t), and
q(t)

d∗
can be calcu-

lated from the decomposed homography matrix. Hence, the
expressions given in (27) and (28) represent a measurable form
of the kinematic control vc(t) and ωc(t). By substituting the
equivalent unmeasurable control expression given in (25) into
(24), the following closed-loop error system is obtained

ėtx = −kv etx
x∗i

+ ωcety

ėty = −ωcetx
ėo = −kω1eo + kω2

µ
ety
x∗i

¶2
sin (t) .

(29)

Remark 2 The above closed-loop system for eo(t) rep-
resents a stable linear system subject to the disturbance

kω2

µ
ety(t)

x∗i

¶2
sin (t); hence, eo(t) is bounded provided the dis-

turbance is bounded. Furthermore, if

lim
t→∞

ety(t) = 0 (30)

then it is clear that

lim
t→∞

eo(t) = 0. (31)

3.3 Stability Analysis
Theorem 1 The control law given in (27) and (28) ensures
that the position and orientation of the WMR coordinate frame
F is regulated to the desired position/orientation described by
F∗ in the sense that

lim
t→∞

et(t), eo(t) = 0. (32)

Proof. To prove (32), we define a non-negative function V (t)
as follows

V , 1

2
eTt et. (33)

After taking the time derivative of (33) and then substituting
the closed-loop error system given in (29) into the resulting
expression, we obtain

V̇ = −kv
x∗i
e2tx. (34)

The expressions given in (33) and (34) can be used to prove
that et(t) ∈ L∞ and that etx(t) ∈ L2. Based on the fact that
et(t) ∈ L∞, the arguments given in Remark 2 can be used
to prove that eo(t) ∈ L∞. After utilizing (2), (18), (24), and
(27), we can prove that xi(t), yi(t), miy(t), vc(t), wc(t), ėt(t),
and ėo(t) ∈ L∞. Based on the fact that et(t), eo(t), ėt(t), and
ėo(t) ∈ L∞ and that etx(t) ∈ L2, Barbalat’s lemma [22] can
be employed to prove that

lim
t→∞

etx(t) = 0. (35)

From the closed-loop error system given in (29), (35) can be
used to prove that

lim
t→∞

ėty(t) = 0. (36)

After taking the time derivative of the product etx(t)ety(t)
and substituting (29) into the resulting expression, we obtain

d

dt
(etxety) = e

2
tyωc + etx

µ
ėty − kv ety

x∗i

¶
. (37)

From (35) and the fact that the signal e2ty(t)ωc(t) is uniformly
continuous,1 we can invoke the Extended Barbalat’s Lemma
[10] to prove that

lim
t→∞

d

dt
(etx(t)ety(t)) = 0 (38)

and that
lim
t→∞

ety(t)ωc(t) = 0. (39)

After taking the time derivative of the product ety(t)ωc(t),
and then utilizing (25) and (29), the following expression can
be obtained

d

dt
(etyωc) = kω2

e3ty
x∗2i

cos (t) (40)

+

·
ėty

µ
ωc + 2kω2

e2ty
x∗2i

sin (t)

¶
− kω1etyωc

¸
.

Based on (36) and (39), the bracketed term of (40) goes to zero

as t→∞. Therefore, since the term e3ty(t)

x∗2i
cos (t) is uniformly

continuous (since et(t), ėt(t) ∈ L∞), the Extended Barbalat’s
Lemma [10] can be invoked again to prove that

lim
t→∞

e3ty(t)

x∗2i
cos (t) = 0, (41)

which implies that
lim
t→∞

ety(t) = 0. (42)

From (42) and the arguments given in Remark 2, we can now
prove that

lim
t→∞

eo(t) = 0 ¤. (43)

4 Conclusion
In this paper, asymptotic regulation of the posi-
tion/orientation of a WMR is achieved with a monocular
vision system. By comparing the features of an object from
an initial snapshot to features of the object in the current
image, geometric relationships are exploited to determine a
Euclidean homography that relates the image-space feedback
to the actual Euclidean position/orientation of the camera
(and hence the WMR) in a local coordinate system. By
decomposing the homography into separate translation and
rotation components, we were able to exploit reconstructed
3D task-space information to construct the kinematic con-
troller. The control design is facilitated by performing the
stability analysis in terms of the unmeasurable camera/WMR
Euclidean position. Our future efforts will target the devel-
opment of analytical methods that enable adaptive/robust
techniques to be employed to compensate for the uncertainty
associated with the camera calibration parameters. Future
efforts will also target real-time experimental demonstration
of the proposed controllers using a Cybermotion K2A mobile
robot and a Dalsa CAD 6 camera capable of capturing 955
frames per second.
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5 Appendix A
By using the geometric relationships given in Figure 2, it is clear
that d is the projection of m̄i(t) along n(t), and hence, (2) can be
used to show that

d = nT m̄i = n
Tmixi. (44)

Likewise, from (8), the following expression can be obtained

d∗ = (n∗)T m∗i x
∗
i . (45)

After dividing (44) by (45) and then rearranging the resulting equa-
tion, the following expression can be obtained

xi

x∗i
=
(n∗)T m∗i
nTmi

µ
d

d∗

¶
. (46)

From the geometry given in Figure 2, it can also be determined that

d = d∗ + nT q. (47)

After dividing (47) by d∗, the following expression can be obtained

d

d∗
= 1 + nT

q

d∗
. (48)

Substituting (48) into (46) and then making use of the fact that
n = Rn∗ yields

xi

x∗i
=

(n∗)T m∗i
(n∗)T RTmi

h
1 + (n∗)T RT

³ q
d∗
´i
. (49)
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