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Abstract

In this paper, the 3-Dimensional (3D) position and orientation
of a camera held by the end-effector of a robot manipulator is reg-
ulated to a constant desired position and orientation despite (i) the
lack of depth information of the actual or desired camera position
from a target, (ii) the lack of a 3D model of the target object, and
(iii) parametric uncertainty in the dynamic model of the robot ma-
nipulator. Specifically, by fusing 2D image-space and 3D task-space
information (i.e., 2.5D visual servoing) while actively adapting for
unknown depth information, a task-space kinematic controller is de-
veloped that is proven to ensure asymptotic regulation of the posi-
tion and orientation of the camera. Based on the desire to enhance
the robustness of the control design, the integrator backstepping
approach is then utilized to develop a joint torque control input
to ensure asymptotic regulation of the position and orientation of
the camera, which is held by the end-effector of a kinematically re-
dundant robot manipulator, despite parametric uncertainty in the
dynamic model of the robot. The stability of each controller is
proven through a Lyapunov-based stability analysis.

1 Introduction

Motivated by the desire to enable robotic systems with a greater
sense of perception and ability to operate in unstructured environ-
ments, researchers have actively investigated the use of visual servo-
ing control systems (i.e., using information obtained from a camera
system to provide position and orientation information about the
robot and it’s environment for use in a control scheme). The results
from this research can be broadly divided into Image-Based Visual
Servoing (IBVS) and Position-Based Visual Servoing (PBVS) tech-
niques. In PBVS, features are extracted from the camera image
and then related to the task-space through the calibrated image
Jacobian. The resulting task-space error system is then utilized
by the control system. Since the control is calculated based on
the task-space error system, inaccuracies in camera calibration will
lead to inaccuracies in the 3-Dimensional (3D) task-space recon-
struction and ultimately in the task execution. Moreover, since the
image-space information is not utilized by the controller, the im-
age features may exit the camera’s field-of-view resulting in a loss
of stability. In contrast to PBVS, IBVS schemes define an image-
space error system that is utilized by the controller. Based on the
fact that IBVS controllers servo from the image-space error, this
approach ensures that the image will remain in the camera field-
of-view and there is conjecture that this approach facilitates some
measure of robustness to calibration errors; however, IBVS tech-
niques have problems related to singularities in the image Jacobian,
and local minimas may be reached rather than the actual desired
position and orientation. In addition to the previous shortcomings,
a common characteristic of many PBVS and IBVS techniques is
that an accurate 3D model of the environment (or target image)
is often required (see [1] for a more in-depth discussion regarding
PBVS and IBVS).
Several researchers have recently developed partitioned ap-

proaches that exploit a combination of 3D task-space information
and 2D image-space information to overcome many of the short-
comings of traditional PBVS and IBVS approaches. For example,
in the series of papers by Malis and Chaumette (e.g., [2, 3, 15, 16])
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various kinematic control strategies (coined 2.5D visual servo con-
trollers) exploit the fact that the interaction between translation
and rotation components can be decoupled through a homography.
Specifically, information from the 3D task-space (obtained either
through a given 3D model or more interestingly through a projec-
tive Euclidean reconstruction) is utilized to regulate the rotation
error system while information from the 2D image-space is utilized
to control the translation error system. This control approach in-
corporates the advantages of both PBVS and IBVS; however, many
of the disadvantages of the traditional approaches are avoided [16]:
(i) an accurate 3D model of the environment (or target image) is
not required, (ii) the image is guaranteed to remain in the camera
field-of-view, (iii) local minima can be avoided, and (iv) singularities
only exist in the image Jacobian in degenerate cases. In [8], Deguchi
describes how an interaction between the translation and rotation
of images can result in slower transient performance due to ineffi-
cient camera motions used to reach the desired image. Based on
this observation, Deguchi then proposes two algorithms to decouple
the rotation and translation components using a homography and
an epipolar condition. Specifically, Deguchi decomposes the trans-
lation and rotation components through a homography and states
that the 2.5D controller given in [3] can be utilized, and as an alter-
nate method, Deguchi develops a kinematic controller that utilizes
task-space information to regulate the translation error and image-
space information to regulate the rotation error. More recently,
Corke and Hutchinson [7] developed a new hybrid image-based vi-
sual servoing scheme that decouples rotation and translation com-
ponents about the z-axis from the remaining degrees of freedom to
address the so called “Chaumette Conundrum,” in which desirable
image-space trajectories result in undesirable Cartesian trajectories.
One drawback of the controllers given in [2, 3, 7, 8, 14, 15, 16] is that
each of the results claim that a constant estimate of the aforemen-
tioned depth information can be utilized in lieu of the exact value
(although, no stability analysis is provided to support this claim).
That is, as stated in [16], an off-line learning stage is required to
estimate the distance of the desired camera position to the refer-
ence plane. Motivated by the desire to compensate for the afore-
mentioned depth information, [5] developed an adaptive kinematic
controller to ensure uniformly ultimately bounded (UUB) set-point
regulation of the image point errors while compensating for the un-
known depth information, provided conditions on the translational
velocity and the bounds on uncertain depth parameters are satis-
fied. In [19], Taylor et al. developed a kinematic controller that uti-
lizes a constant, best-guess estimate of the calibration parameters
to achieve local set-point regulation; although, several conditions
on the rotation and calibration matrix are required.
Most control approaches do not account for the inevitable mis-

match between the actual and desired camera translation and rota-
tion velocity caused by the nonlinear kinematics and dynamics of
the robot manipulator, and hence, reduce the problem to that of
kinematic control that simply reacts to image-space errors (e.g., all
of the aforementioned research efforts have taken this approach). In
[6], Corke and Good presented one of the first results to highlight
the advantages of incorporating the robot dynamics in the over-
all control design. Motivated by the results in [6], several other
researchers have proposed vision-based controllers that incorporate
the dynamics of the robot. Most of this research has targeted vision-
based robotic systems in which the robot is constrained to move in
a plane such that the optical axis of the camera remains perpendic-
ular to the robot workspace (e.g., see [9, 12, 20, 21]). Some of the
few control designs that take the robot dynamics into account for
the 3D visual servoing problem are given in [4, 13].
In this paper, we relate feature points extracted from images

taken from the desired and current camera position and orientation
through a homography. In a similar manner as in [2, 3, 8, 14, 15, 16],
we then decompose the homography into translation and rotation
components. Based on this homography decomposition, we then
develop a task-space kinematic controller that is inspired by [16].
Specifically, in a similar manner as in [16], the kinematic controller
utilizes projected 3D task-space information to regulate the rota-
tion error system and 2D image-space information to regulate the
translation error system. Unlike the controller given in [16], the
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controllers in this paper do not require an off-line learning phase
to determine the unknown distance from the desired camera po-
sition to the reference plane. In contrast, we utilize Lyapunov-
based control design and stability analysis techniques to develop
an adaptive update law that is utilized to compensate for the un-
known distance. Motivated by the desire to incorporate the effects
of the robot kinematics and dynamics, we utilize the integrator
backstepping technique to develop a joint torque control input that
ensures regulation of the translation and rotation error systems for
the camera-in-hand, while adapting for both the unknown depth
information and parametric uncertainty in the dynamic model of a
kinematically redundant robot manipulator.

2 Model Development

2.1 Camera Model

To facilitate the development of the camera model, we consider two
orthogonal coordinate systems, denoted by F and F∗, where F is
attached to a camera that is held by the robot end-effector, and F∗
is a fixed coordinate system that represents the constant, desired
position and orientation of F . As in [16], we also consider a reference
plane π that is defined by four target points Oi ∀i = 1, 2, 3, 4 (only
3 points are required to define a plane, however, in the subsequent
analysis, 4 target points located on the plane π are required) where
the actual and desired 3D coordinates of Oi expressed in terms of F
and F∗ are denoted by Xi (t) , Yi (t) , Zi (t) ∈ R and X∗i , Y ∗i , Z∗i ∈R, respectively, and are defined as elements of m̄i (t), m̄∗i ∈ R3 as
follows

m̄i =
£
Xi Yi Zi

¤T (1)

m̄∗i =
£
X∗i Y ∗i Z∗i

¤T
. (2)

Since the task-space is projected onto the image-space, we define
normalized coordinates, denoted bymi (t), m∗i , of the targets points
m̄i (t) and m̄∗i , respectively, as follows

mi = m̄i
Zi

=
h

Xi
Zi

Yi
Zi

1
iT

(3)

m∗i =
m̄∗i
Z∗i

=
h

X∗i
Z∗i

Y ∗i
Z∗i

1
iT

(4)

where we make the standard assumption that Zi (t), Z∗i are positive
(i.e., the degenerate cases when Zi (t), Z∗i = 0 are not considered).
In addition to having a task-space coordinate as described previ-

ously, each target point will also have a projected pixel coordinate
expressed in terms of F denoted by ui (t) , vi (t) ∈ R, which are
defined as elements of pi (t) as follows

pi =
£
ui vi 1

¤T (5)

where the projected pixel coordinates of the target points are related
to the normalized task-space coordinates by the following global
invertible transformation

pi = Ami (6)

where A ∈ R3×3 is a known, constant, and invertible intrinsic cam-
era calibration matrix that is explicitly defined as [15]

A =

 fku −fku cotφ u0
0 fkv

sinφ
v0

0 0 1

 (7)

where u0, v0 ∈ R denote the pixel coordinates of the principal
point (i.e., the image center that is defined as the frame buffer
coordinates of the intersection of the optical axis with the image
plane), ku, kv ∈ R represent camera scaling factors, φ ∈ R is the
angle between the camera axes, and f ∈ R denotes the camera
focal length (see Figure 1). Similarly, the constant, desired pixel
coordinates expressed in terms of F∗ denoted by u∗i , v∗i ∈ R, are
defined as elements of p∗i as follows

p∗i =
£
u∗i v∗i 1

¤T (8)

and can be related to the normalized coordinates m∗i by the follow-
ing relationship

p∗i = Am
∗
i . (9)

Remark 1 Since the camera is assumed to be calibrated, (i.e., the
matrix A defined in (7) is known), mi (t) of (3), can be computed
via the relationship of (6). In a similar manner, m∗i can be com-
puted by (9).
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Figure 1: Relationship of the task-space coordinates (x1, y1, z1)
to the image-space coordinates (u1 + u0, v1 + v0) of a task-space
point M where (u0, v0) denote the image-space coordinate origin
and Lx, Ly denote image-space projections for φ = 90◦

2.2 Control Objective

The central concept behind 2.5D visual servoing is to utilize 2D
information about the environment extracted from the camera im-
age along with estimated 3D information about the environment
obtained through an Euclidean reconstruction. In this paper, the
Euclidean reconstruction is facilitated by comparing the current
camera image to the desired camera image (i.e., solving the motion
and structure from motion problem [10]) through a homography ma-
trix [10, 16, 22]. Specifically, a projective homography G (t) ∈ R3×3
can be utilized to relate the image points pi (t) of (6) to the image
points p∗i of (9) in the following manner [10]

pi = αiGp
∗
i (10)

where αi (t) ∈ R is an unknown scaling factor defined as follows
αi =

Z∗i
Zi

(11)

where Zi (t) and Z∗i were defined in (1) and (3), respectively. After
substituting (6) and (9) into (10) for pi (t) and p∗i , respectively, and
then premultiplying the resulting expression by A−1, (10) can be
rewritten as follows

mi = αiHm
∗
i (12)

where H (t) ∈ R3×3 denotes the Euclidean homography that is
defined as follows

H = A−1GA. (13)
The Euclidean homography can be computed using (13) where G(t)
is determined by utilizing (10) to solve a linear system of equations
using 4 pairs of points

¡
p∗i , pi (t)

¢
on the reference plane π, and A is

defined in (7). After normalizing the projective homography G(t) =
[g(t)]ij ∀i, j = 1, 2, 3 with respect to g33, 8 unknown parameters
remain in G(t). To solve for these unknown parameters, 4 sets of
image points are required because each set of points represent 3
linear equations, resulting in 12 equations and 12 unknowns (i.e.,
8 unknowns from the normalized G(t) (g33 = 1) and αi ∀i =
1, 2, 3, 4).
By utilizing various techniques (e.g., see [10, 22]), H(t) can be

decomposed as follows

H = R+ xhn
∗T (14)

where the rotation matrix R (t) ∈ R3×3, the constant unit normal
from F∗ to π denoted by n∗ ∈ R3 (where n∗ is expressed in the
F∗ coordinate frame), and the scaled translation vector denoted
by xh (t) ∈ R3 are all computed from the decomposition of H(t).
The actual translation from F to F∗ denoted by xf (t) ∈ R3 is
unmeasurable; however, it can be expressed in terms of the known
scaled translation vector xh (t) as follows

xf = xhd
∗ (15)

where d∗ ∈ R denotes the constant, unknown distance from F∗ to
π along n∗.
To quantify the translation mismatch between the actual and

desired 3D task-space camera position, we define the translation
error ev (t) ∈ R3 as follows

ev = me −m∗e (16)

whereme (t) ∈ R3 denotes the extended coordinates [16] of an image
point on π in terms of F and is defined as follows

me =
£
me1 (t) me2 (t) me3 (t)

¤T
=
h

X1
Z1

Y1
Z1

ln (Z1)
iT
(17)

andm∗e ∈ R3 denotes the extended coordinates of the corresponding
desired image point on π in terms of F∗ and is defined as follows
m∗e =

£
m∗e1 m∗e2 m∗e3

¤T
=
h

X∗1
Z∗1

Y ∗1
Z∗1

ln
¡
Z∗1
¢ iT

(18)
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where ln (·) denotes the natural logarithm. Any point Oi on π
can be utilized in the control development; however, to reduce the
notational complexity, the image point O1 is selected, and hence,
the subscript 1 is utilized in lieu of i.
In addition to forcing the task-space camera translation error to

zero, we also want to force the rotation mismatch between F and
F∗ (i.e., R (t) given in (14)) to the identity matrix. To this end, we
define a rotation error-like signal eω (t) ∈ R3 as follows [16]

eω = uθ (19)

where u (t) ∈ R3 represents a unit rotation axis and θ (t) ∈ R de-
notes the rotation about u(t) that is assumed to be confined to the
following region

−π < θ (t) < π. (20)
The parameterization u (t) θ (t) is related to the rotation matrix
R (t) by the following expression

R = I3 + sin θ [u]× + 2 sin
2 θ
2
[u]2× (21)

where the notation Ii denotes an i × i identity matrix, and the
notation [ζ]× denotes the following skew-symmetric matrix

[ζ]× ,

 0 −ζ3 ζ2
ζ3 0 −ζ1
−ζ2 ζ1 0

 ∀ζ =
 ζ1

ζ2
ζ3

 . (22)

Based on the previous development, the control objective, stated in
mathematical terms, is to ensure regulation of ev(t) and eω(t) in
the sense that

lim
t→∞ ev(t), eω(t) = 0. (23)

Remark 2 After the stability analysis for Theorem 1, we prove
that the results given in (23) ensure that the rotation and transla-
tion mismatch between F and F∗ are regulated as follows

lim
t→∞R(t) = I3, lim

t→∞xf (t) = 0. (24)

Remark 3 To obtain u (t) and θ (t) from a given rotation matrix
R (t), the following expressions can be utilized [11]

cos θ = 1
2
(tr (R)− 1) (25)

[u]× =
R−RT
2 sin(θ)

(26)

where the notation tr(·) denotes the trace of a matrix.
Remark 4 Based on (3), (4), (6), (16-18), and the comments in
Remark 1, the first 2 elements of ev(t) are measureable. We can
also prove that the third element of ev(t) is measureable. Based on
the fact that R(t) can be computed from (14), we can conclude from
(19) and Remark 3 that eω(t) is measureable.

3 Task-Space Kinematic Control Development

3.1 Control Design

Based on the development given in Appendix B (also see [14, 16]),
the open-loop error dynamics for ev(t) and eω(t) can be expressed
as follows

ėv =
1

d∗γ2
Lvvc + L(v,ω)ωc (27)

ėω = Lωωc (28)
where Lv (t) , L(v,ω) (t) , Lω (t) ∈ R3×3 are measurable matrices
that are defined as follows

Lv =

 −1 0 me1

0 −1 me2

0 0 −1

 (29)

L(v,ω) =

 me1me2 −1−m2
e1 me2

1 +m2
e2 −me1me2 −me1

−me2 me1 0

 . (30)

Lω = I3 − θ
2
[u]× +

1− sinc(θ)

sinc2

Ã
θ

2

!
 [u]2× (31)

where
sinc (θ (t)) =

sin θ(t)
θ(t)

.

Given the open-loop error dynamics in (27), we design the task-
space control input vc (t) as follows

vc = −γ2L−1v
h
Tvev + d̂

∗L(v,ω)ωc
i

(32)

where L−1v (t) is given by the following expression

L−1v =

 −1 0 −me1

0 −1 −me2

0 0 −1

 (33)

Tv ∈ R3×3 is a constant, diagonal, positive gain matrix, and d̂∗ (t) ∈
R is a dynamic estimate for d∗ of (15) that is generated by the
following differential update law

.

d̂∗ = k0eTv L(v,ω)ωc (34)

where k0 ∈ R is a positive gain constant. After substituting (32)
into (27) for vc (t), the following closed-loop dynamics for ev (t) are
obtained

ėv = − 1
d∗ Tvev +

d̃∗
d∗L(v,ω)ωc (35)

where d̃∗ (t) ∈ R is a parameter estimate error signal defined as
d̃∗ = d∗ − d̂∗. (36)

Based on the open-loop dynamics given in (28), we design the task-
space control input ωc (t) as follows

ωc = −Tωeω (37)

where Tω ∈ R3×3 is a constant, diagonal, positive gain matrix.
After substituting (37) into (28) for ωc (t), the following closed-loop
dynamics for eω (t) are obtained

ėω = −LωTωeω . (38)

3.2 Stability Analysis

Theorem 1 The kinematic control input given in (32), (34), and
(37) ensures that ev (t) and eω (t), defined in (16) and (19), re-
spectively, are asymptotically regulated in the sense that

lim
t→∞ ev(t), eω(t) = 0. (39)

Proof : To prove Theorem 1, we define a non-negative function
denoted by V (t) ∈ R as follows

V = 1
2
eTv ev +

1
2
eTωeω +

1
2d∗k0 d̃

∗2. (40)

After taking the time derivative of (40) and then substituting (35)
and (38) into the resulting expression for ėv(t) and ėω(t), respec-
tively, we obtain the following expression

V̇ = eTv

³
− 1
d∗ Tvev +

d̃∗
d∗L(v,ω)ωc

´
− eTωTωeω − 1

d∗k0 d̃
∗
.

d̂∗ (41)

where the following facts have been utilized
.

d̂∗ = −
.

d̃∗, eTωLω = e
T
ω . (42)

After substituting (34) into (41) for
.

d̂∗ (t) and canceling common
terms, the following expression is obtained

V̇ = − 1
d∗ e

T
v Tvev − eTωTωeω ≤ 0; (43)

hence, from (40) and (43), we can prove that ev(t), eω(t), d̃∗ (t) ∈L∞ and that ev(t), eω(t) ∈ L2. Since d̃∗ (t) ∈ L∞, it is clear from
(36) that d̂∗ (t) ∈ L∞. Based on the fact that ev(t), eω(t) ∈ L∞,
we can utilize (16), (19), (20), (29), (30), (31), and (37) to prove
that me1 (t), me2 (t), Lv(t), L(v,ω)(t), Lω (t), ωc (t), u (t) ∈ L∞.
From the previous facts, we can now utilize (32), (34), (35), and

(38) to prove that vc (t),
.

d̂∗ (t), ėv (t), ėω (t) ∈ L∞. Since ev (t),
eω (t) ∈ L∞ ∩ L2 and ėv (t), ėω (t) ∈ L∞, we can now employ a
corollary to Barbalat’s Lemma [17] to conclude (39).

Remark 5 Given (23), we can utilize (19), (21), and (23) to
prove that the rotation between F and F∗ asymptotically ap-
proaches the identity matrix as shown below

lim
t→∞R(t) = I3. (44)

From (16-18) and (23), we can prove that

lim
t→∞ ln

³
Z1(t)
Z∗1

´
= 0, (45)

and hence, from (11) and (45), we can prove that

lim
t→∞α1(t) = 1. (46)

Based on (44) and (46), we can substitute (14) into (12) to obtain
the following expression

lim
t→∞m1(t) =

³
I + xh(t)n

∗T
´
m∗1 (47)

From (1), (4), (12), (16-18), and (23), we can also prove that

lim
t→∞m1(t) = m

∗
1; (48)

hence, it is clear from (47) that

lim
t→∞xh(t)

h
n∗Tm∗1

i
= 0. (49)
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Motivated by the desire to prove that limt→∞ xh(t) = 0, we rewrite
the bracketed terms of (49) as followsh

n∗Tm∗1
i
= 1

Z∗1
kn∗k km̄∗1k cos(ψ) (50)

where ψ ∈ R denotes the constant, unknown angle between n∗ and
m̄∗1 (see Figure 2). Based on the assumption that Z

∗
1 is positive,

we can conclude from (2), (49), and (50) that either

ψ = (2k + 1) π
2
, k = 0, 1, 2, ... or lim

t→∞xh(t) = 0; (51)

however, for values of ψ given in (51) we can conclude that Z∗1 = 0.
Since Z∗1 = 0, contradicts with the assumption that Z

∗
1 is positive,

we must conclude that

lim
t→∞xh(t) = 0, (52)

and hence, from (14) and (15), we can now prove that

lim
t→∞H(t) = I3 lim

t→∞xf (t) = 0. (53)

n *n *

F

R

OiOi

d*d*

y

z *z *

y *y *

x *x *

z

x

π

n

d

x fx fF*

ψ

m1(X,Y,Z)m1(X,Y,Z)m*1(X*,Y*,Z*)m*1(X*,Y*,Z*)

Figure 2: Motion and structure parameters where d(t) ∈ R de-
notes the unknown distance from F to π along the unit normal
from F to π denoted by n(t) ∈ R3 (where n(t) is expressed in the
F coordinate frame)

4 Joint-Space Control Development

4.1 Model Development

4.1.1 Kinematic Model

Let Fo and Fe represent orthogonal coordinate frames attached to
the fixed base (i.e., the inertial frame) and the end-effector of the
robot manipulator, respectively. Based on Figure 3, the 3D coordi-
nates of a point O1 on the previously defined stationary reference
plane π can be related to the 3D coordinates of Fo through the
following relationship

xo = xp + R̄m̄1 (54)

where xo(t) ∈ R3 denotes the constant 3D coordinates of a point
on π with respect to Fo, xp (t) ∈ R3 denotes the robot end-effector
position, and R̄ (t) ∈ R3×3 is a known rotation matrix defined as

R̄ = R0Roff (55)

where Roff ∈ R3×3 denotes the known, constant rotational offset
between F and Fe, and R0 (t) ∈ R3×3 represents the known ro-
tation between Fo and Fe. To relate the translation and rotation
end-effector velocities to the translation and rotation camera veloc-
ities, we take the time derivative of (54) and multiply both sides of
the resulting expression by R̄T (t) to obtain the following expression

.
m̄1 = −R̄T ve − R̄T [ωe]× R̄m̄1 (56)

where the following facts were utilized

ẋo = 0, ẋp = ve,

[ωe]× =
.

R̄R̄T , R̄T R̄ = I3
(57)

where ve(t) ∈ R3 denotes the translational velocity of the end-
effector, and ωe(t) ∈ R3 denotes the angular velocity of the end-
effector. After exploiting the following properties [11]

R̄T [ωe]× R̄ =
h
R̄Tωe

i
×

(58)h
R̄Tωe

i
×
m̄1 = − [m̄1]× R̄

Tωe,

the expression given in (56) can be rewritten as follows
.
m̄1 = −R̄T ve + [m̄1]× R̄

Tωe. (59)

A relationship for the composite translation and rotation velocity
vector for the robot end-effector denoted by vf (t) ∈ R6 can be
developed as follows

vf =

·
ve
ωe

¸
=

·
R̄ 0
0 R̄

¸ ·
vc
ωc

¸
. (60)

Given that (60) relates the translation and rotation velocity of
the camera to the robot end-effector, we are now motivated to de-
velop a relationship between the end-effector and the fixed base of
the robot (i.e., the manipulator Jacobian). To this end, we note that
the task-space position and orientation of the robot end-effector
with coordinates expressed in F0, denoted by xe(t) ∈ R6, is defined
as follows

xe = f(q) (61)
where f(q) ∈ R6 denotes the forward kinematics, and q(t) ∈ Rn
denotes a vector of link positions. Based on (61), the end-effector
translation and rotation velocities can be related to the joint veloc-
ities through the following relationship

ẋe = vf = J(q)q̇ (62)

where q̇(t) ∈ Rn denotes the link velocity and the manipulator
Jacobian, denoted by J(q) ∈ R6×n, is defined as follows

J(q) = ∂f(q)
∂q

. (63)

Based on the subsequent control development and the fact that
redundant robot manipulators are considered (i.e., n > 6), we define
a pseudo-inverse of J(q), denoted by J+(q) ∈ Rn×m, as follows

J+ = JT
³
JJT

´−1
(64)

where J+(q) satisfies the following equality

JJ+ = I6. (65)

The pseudo-inverse defined by (64) satisfies the Moore-Penrose Con-
ditions given below

JJ+J = J J+J J+ = J+¡
J+J

¢T
= J+J

¡
JJ+

¢T
= JJ+

(66)

and the matrix In−J+J , which projects vectors onto the null space
of J(θ), satisfies the following properties¡

In − J+J
¢ ¡
In − J+J

¢
= In − J+J J

¡
In − J+J

¢
= 0¡

In − J+J
¢T

=
¡
In − J+J

¢ ¡
In − J+J

¢
J+ = 0.

(67)
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Figure 3: Coordinate relationship between the robot base, end-
effector, camera, and π.

Remark 6 The subsequent control development assumes that the
minimum singular value of J(q), is greater than a known, positive
constant δ > 0, such that sup

q(t)

©°°J+(q)°°ª is known a priori; hence,
all kinematic singularities are avoided.

4.1.2 Dynamic Model

The dynamic model for the n-rigid link, revolute, direct-drive, robot
manipulator described previously can be expressed as follows

M(q)q̈ + Vm(q, q̇)q̇ +G(q) + F (q̇) = τ (68)

where q̈(t) ∈ Rn denotes the link acceleration, M(q) ∈ Rn×n
represents the inertia matrix, Vm(q, q̇) ∈ Rn×n represents the
centripetal-Coriolis matrix, G(q) ∈ Rn represents the gravity ef-
fects, F (q̇) ∈ Rn represents the friction effects, and τ(t) ∈ Rn
represents the torque input vector. The robot dynamics given in
(68) has the following useful properties.
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Property 1: The symmetric and positive-definite inertia matrix
M(q) satisfies the following inequalities

m1 kξk2 ≤ ξTM(q)ξ ≤ m2 kξk2 ∀ξ ∈ Rn (69)

wherem1,m2 are positive constants, and k·k denotes the stan-
dard Euclidean norm.

Property 2: The inertia and centripetal-Coriolis matrices satisfy
the following skew symmetric relationship

ξT
µ
1

2

·
M(q)− Vm(q, q̇)

¶
ξ = 0 ∀ξ ∈ Rn. (70)

Property 3: The centripetal-Coriolis matrix satisfies the following
relationship

Vm(q, ν)ζ = Vm(q, ζ)ν ∀ ζ, ν ∈ Rn. (71)

Property 4: The dynamics given in (68) can be linearly parame-
terized as shown below

M(q)
..
q + Vm(q, q̇)q̇ +G(q) + F (q̇) =W (q, q̇, q̈)ψ (72)

where ψ ∈ Rr contains the constant system parameters, and
the regression matrix W (·) ∈ Rn×r contains known functions
dependent on the signals q(t), q̇(t), and q̈(t) (it is assumed that
if the arguments of W (·) are bounded then W (·) is bounded).

Remark 7 Since we are only concerned with revolute robot ma-
nipulators, we know that kinematic and dynamic terms denoted
by M(q), G(q), J(q), and J+(q) are bounded for all possible q(t)
(i.e., these kinematic and dynamic terms only depend on q(t) as
arguments of trigonometric functions). Likewise, provided q̇(t) is
bounded, Vm(q, q̇), J̇(q, q̇), and J̇+(q, q̇) will be bounded.

4.2 Backstepping Control Design

To facilitate the subsequent control development and stability
analysis, we define the following composite translation and rota-
tion error signal e(t) ∈ R6 as follows

e =
£
eTv eTω

¤T
. (73)

Motivated by the desire to compensate for the mismatch between
the actual and desired camera translation and rotation velocities,
we add and subtract terms to the open-loop error dynamics for ev(t)
and eω(t), developed in (27) and (28), respectively, to separate the
mismatch terms from the desired velocity terms as follows

ė =

"
1

d∗γ2
Lvvcd + L(v,ω)ωcd

Lωωcd

#
+ χ (74)

where vcd(t), ωcd(t) ∈ R3 denote the desired camera translation
and rotation velocities, respectively, χ(t) ∈ R6 denotes the velocity
mismatch vector defined as follows

χ =

"
1

d∗γ2
Lv (vc − vcd) + L(v,ω) (ωc − ωcd)

Lω (ωc − ωcd)

#
. (75)

Based on the results from Theorem 1, we design vcd(t), ωcd(t) as
follows

vcd = −γ2L−1v
h
Tvev + d̂

∗L(v,ω)ωcd
i

(76)

ωcd = −Tωeω (77)

where d̂∗ (t) is redesigned as follows
.

d̂∗ = k0eTv L(v,ω)ωcd (78)

and the rest of the signals of (76) and (77) are defined in the same
way as in (32) and (37). After substituting (76) and (77) into (74)
and exploiting the relationship given in (60), we can rewrite (74)
and (75) as follows

ė =

"
− 1
d∗ Tvev +

d̃∗
d∗L(v,ω)ωcd−LωTωeω

#
+ χ (79)

where

χ =

"
1

d∗γ2
LvR̄T (ve − ved) + L(v,ω)R̄T (ωe − ωed)

LωR̄T (ωe − ωed)

#
(80)

and ved(t), ωed(t) ∈ R3 denote the desired end-effector translation
and rotation velocities, respectively, defined as follows

vfd =

·
ved
ωed

¸
=

·
R̄ 03×3
03×3 R̄

¸ ·
vcd
ωcd

¸
(81)

where the notation 0i×i denotes an i× i matrix where each element
is 0. Motivated by the desire to express (79) and (80) in terms of
joint velocities, we utilize (60) and (62) to rewrite (80) as follows

χ = − ¡Πm1 + 1
d∗Πm2

¢
Jρ (82)

where the auxiliary control terms Πm1 (t), Πm2 (t) ∈ R6×6, and
ρ (t) ∈ Rn are defined as follows

Πm1 =

·
03×3 L(v,ω)R̄

T

03×3 LωR̄T

¸
, Πm2 =

"
1
γ2
LvR̄T 03×3

03×3 03×3

#
(83)

ρ = J+vfd +
¡
In − J+J

¢
g − q̇ (84)

where g(t) ∈ Rn is an auxiliary signal that is constructed according
to a sub-task control objective (e.g., joint-limit avoidance, obstacle
avoidance), vfd(t) was defined in (81), and J+(t) was defined in
(64). The subsequent stability analysis mandates that the sub-task
control objective be formulated in such a manner that both g(t)
and ġ(t) are bounded signals.
By determining the open-loop dynamics for ρ (t), we can now in-

corporate the robot joint torque control input. To this end, we take
the time derivative of (84), pre-multiply the resulting expression by
M(q), and then substitute (68) for M(q)q̈(t) to obtain the following
expression

M ρ̇ = −Vmρ+ Y φ+ 1
d∗ J

TΠTm2e− τ (85)

where the term JT (t)ΠTm2(t)e(t)

d∗ has been added and subtracted
to the right-hand side of (85), and the linear parameterization
Y (q, q̇, ġ, g, vf )φ is defined as follows

Y φ = M
³
J̇+

¡
vfd − Jg

¢
+ J+

³
v̇fd − J̇g

´
+
¡
In − J+J

¢
ġ
´
(86)

+Vm(q, q̇)
¡
J+vfd +

¡
In − J+J

¢
g
¢
+G(q) + F (q̇)

− 1
d∗ J

TΠTm2e

where Y (q, q̇, ġ, g, vf ) ∈ Rn×r denotes a known regression matrix,
and φ ∈ Rr denotes the constant unknown system parameters (e.g.,
mass, inertia, friction coefficients, desired distance of end-effector
to the image plane π). The linear parameterization given in (86)
is achieved by utilizing Property 4 and the fact that v̇fd (t) can be
linearly parameterized as follows

v̇fd =
1
d∗Ωa +Ωb (87)

where Ωa (t), Ωb (t) ∈ R6 are auxiliary measurable signals (available
upon request).
Based on the error system development given in (85) and the

subsequent stability analysis, we design the control torque input
τ(t) as follows

τ = Y φ̂+Kρ− JTΠTm1e (88)
where K ∈ Rn×n is a constant, positive definite, diagonal gain
matrix, and φ̂(t) ∈ Rr is a dynamic estimate for φ of (86) that is
generated by the following differential update law

.

φ̂ = ΓφY
T ρ (89)

where Γφ ∈ Rr×r is a constant, positive definite, diagonal gain
matrix. After substituting (88) into (85), the following closed-loop
dynamics for ρ(t) are obtained

M ρ̇ = −Vmρ+ Y φ̃+ JT
¡
Πm1 +

1
d∗Πm2

¢T
e−Kρ (90)

where φ̃(t) ∈ Rr denotes the parameter estimation error defined as
follows

φ̃ = φ− φ̂. (91)

4.3 Stability Analysis

Theorem 2 The control law given by (76), (77), (78), (88) and
(89) ensures that the 3D task-space position and orientation of the
camera are asymptotically regulated to the desired position and ori-
entation in the sense that

lim
t→∞ e(t), ρ(t) = 0. (92)

Proof: To prove Theorem 2, we define a non-negative function
denoted by V (t) ∈ R as follows

V =
1

2
eT e+

1

2k0

d̃∗2
d∗ +

1

2
ρTMρ+

1

2
φ̃
T
Γ−1φ φ̃. (93)

After taking the time derivative of (93), and then utilizing (70),
(78), (79), (90), and the fact that

.

φ̃(t) = −
.

φ̂(t) (94)
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the following expression is obtained

V = eT

"
− 1
d∗ Tvev +

d̃∗
d∗L(v,ω)ωcd−LωTωeω

#
(95)

−eT ¡Πm1 + 1
d∗Πm2

¢
Jρ− d̃∗

d∗
³
eTv L(v,ω)ωcd

´
+ρT

³
Y φ̃+ JT

¡
Πm1 +

1
d∗Πm2

¢T
e−Kρ

´
− φ̃

T
Y T ρ.

After cancelling the interconnection terms, we can rewrite (95) as
follows

V̇ = − 1

d∗
eTv Tvev − eTωTωeω − ρTKρ (96)

where the fact that

eTωLωTωeω = e
T
ωTωeω (97)

was utilized. From the structure of (93) and (96), we can prove
that e(t), d̃∗(t), ρ(t), and φ̃(t) ∈ L∞ and that e(t), ρ(t) ∈ L2.
By utilizing (36), (76), (77), (81), (83), (91) and similar arguments
as in the proof for Theorem 1, we can also prove that me1 (t),
me2 (t), Lv(t), L(v,ω)(t), Lω (t), vcd(t), ωcd (t), Πm1(t), Πm2(t),
d̂∗(t), vfd(t), φ̂(t) ∈ L∞. Given the previous boundedness argu-
ments, (78), (79), (82), (84), and (89) can now be utilized along

with the assumption that J(q), g(t) ∈ L∞ to prove that
.

d̂
∗
(t), ė(t),

q̇(t),
.

φ̂(t), ρ̇(t) ∈ L∞. Based on (86-90), the comments provided
in Remark 7, and the assumption that ġ(t) ∈ L∞, we can now
prove that Y (q, q̇, ġ, g, vf ), ρ̇(t), τ(q) ∈ L∞; hence, all the closed-
loop signals remain bounded. Since e(t), ρ(t) ∈ L∞ ∩ L2 and ė(t),
ρ̇(t) ∈ L∞, we can now employ a corollary to Barbalat’s Lemma
[17] to conclude the result given in (92).

5 Discussion and Conclusions

In this paper, a kinematic visual servoing controller is developed
that ensures asymptotic regulation of the camera translation and
rotation error systems while simultaneously compensating for un-
certainty in the distance from the desired camera position to the
stationary target plane. Specifically, by decomposing the homog-
raphy into separate translation and rotation components, we were
able to exploit both 2D image-space and projected 3D task-space
(i.e., 2.5D visual servoing) information to construct the kinematic
controller. Based on the desire to enhance the robustness of the
control design, the integrator backstepping approach was utilized
to incorporate the robot kinematic and dynamic models. Specifi-
cally, a joint torque control input was developed to ensure asymp-
totic regulation of the position and orientation of the camera held
by the robot end-effector (camera-in-hand problem) of a kinemati-
cally redundant robot manipulator, despite parametric uncertainty
in the dynamic model of the robot. The stability of each controller
is proven through Lyapunov-based stability analysis and the perfor-
mance of the controller is demonstrated through simulation results.
In the same spirit as in [8], we could utilize the development

given in this paper to utilize task-space information to regulate the
translation error system and image-space information to regulate
the rotation error system; however, unlike the approach given in
[8], we can adaptively compensate for the depth information. One
of the motivating factors for developing our approach based on the
work of [16], rather than [8], is that [16] only requires the controller
to servo on one image point. That is, the fundamental difference
in the work by [16] and [8] is that since [8] utilizes the image-space
information to regulate the rotation error system, multiple image
points are required to prove the stability result (i.e., rotation cannot
be determined from a single point). In contrast, since [16] utilizes
the image-space information to regulate the translation error sys-
tem, only one image point is required in the feedback-loop.
Although the controller developed in this paper compensates for

unknown depth information and parametric uncertainty in the dy-
namic model of the robot manipulator, uncertainty related to the
camera calibration (i.e., extrinsic and intrinsic camera parameters)
is not addressed. Several researchers have experimentally inves-
tigated the robustness of proposed visual servoing algorithms to
calibration uncertainty; however, very few analytical treatments of
the subject have been developed (with the exception of research
that targets the special case in which the camera’s optical axis is
perpendicular to a fixed plane of the task-space, such as the fixed-
camera configuration or the camera-in-hand problem when the ro-
bot is constrained to planar motion). One result that examines the
effect of calibration uncertainty on the visual servoing algorithm is
provided in [16]; however, the result is theoretically unsatisfying.
Specifically, upon careful examination of the estimated homogra-
phy matrix (i.e., Eq. (27) of [16]), it can be determined that there
are more unknowns than equations; hence, additional points must
be defined on the reference plane to increase the number of avail-
able equations. Unfortunately, even by defining more points on
the reference plane, analytical techniques such as [10] cannot be
used to determine a solution for the nonlinear system of equations
(and hence, decompose the homography). Numerical techniques

could be utilized to solve the system of nonlinear equations; how-
ever, it is not guaranteed that the resulting solution would have
any meaningful significance. In essence, this approach resorts back
to numerically estimating the calibration parameters on-line, rather
than embedding the uncertainty in the kinematic model to facilitate
adaptive/robust control techniques.
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