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Nuclear life in neutron-rich and proton-rich Terra Incognita is di�erent from that around
the stability line; the promised access to completely new combinations of proton and
neutron numbers o�ers prospects for new structural phenomena. The main objective of
this talk is to discuss some of the theoretical challenges and opportunities for nuclear
structure research with new Electro-Magnetic Isotope Separators.

1. INTRODUCTION

Low-energy nuclear physics is undergoing a renaissance. Experimentally, there has been
a technological revolution which made it possible to dramatically improve the \signal-to-
noise" ratio. The next-generation experimental tools, to which this conference is devoted,
invite us on the journey to the vast territory of nuclear existence which has never been
explored by science. Hand in hand with experimental developments, a qualitative change
in theoretical modeling is taking place. Due to the progress in computer technologies
and numerical algorithms, it has became exceedingly clear that the uni�ed microscopic
understanding of the nuclear many-body system is no longer a dream. There has been
real progress in many areas of theoretical nuclear structure. The e�ective �eld theory

�This work was supported in part by the U.S. Department of Energy under Contract Nos. DE-FG02-
96ER40963 (University of Tennessee) and DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge
National Laboratory, and by the Polish Committee for Scienti�c Research (KBN) under Contract No.
5 P03B 014 21.



2

microscopic calculations for nuclear mattermicroscopic calculations for nuclear matter

interior ofinterior of
neutron starneutron star

nuclear part of innernuclear part of inner
crust of neutron starcrust of neutron star

dripped neutronsdripped neutrons
in crust ofin crust of
neutron starneutron star

supernovaesupernovae
(higher T also)(higher T also)

heavy-ion collisionsheavy-ion collisions
(higher T also)(higher T also)

neutron neutron 
drip linedrip line

proton drip lineproton drip line

ne
ut

ro
n 

ex
ce

ss
 (

N
-Z

)/
A

finitefinite
nucleinuclei

0

0.3

-0.3

1
?? ??

?? ??

Local matter density

0.6

70Ca

100Sn
48Ni

48Ca

8He

Figure 1. Diagram illustrating the range of nucleonic densities and neutron excess of
importance in various contexts of the low- and intermediate-energy nuclear many-body
problem. (Based on Ref. [1].)

o�ers hope for a link between QCD and nucleon-nucleon forces. New interactions have
been developed which, together with a powerful suite of ab-initio approaches, provide a
quantitative description of light nuclei. For heavy systems, global modern shell-model
approaches and self-consistent mean-�eld methods o�er the level of accuracy typical to
phenomenological approaches based on parameters locally �tted to the data. By exploring
connections between models in various regions of the chart of the nuclides, nuclear theory
aims to develop a uni�ed description of the nucleus.

From a theoretical point of view, short-lived exotic nuclei far from stability with \ab-
normal" neutron-to-proton ratios o�er a unique test of those aspects of the many-body
theory (e.g., e�ective interactions) that depend on the isospin degrees of freedom. Figure 1
shows the battle�eld { the territory of various domains of nuclear matter characterized
by the neutron excess, (N � Z)=A, and the isoscalar nucleonic density (� = �n + �p). In
this diagram, the region of �nite (i.e., particle-bound) nuclei extends from the neutron
excess of about �0.2 (proton drip line) to 0.5 (neutron drip line). The next-generation
radioactive nuclear beam (RNB) facilities will provide a unique capability for accessing
the very asymmetric nuclear matter and for compressing neutron-rich matter approaching
density regimes important for supernova and neutron star physics that are indicated in
Fig. 1. The hope is that after probing the limits of extreme isospin, we can later go back
to the valley of stability and improve the description of normal nuclei.
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2. NUCLEAR STRUCTURE THEORY: QUESTIONS AND CHALLENGES

Theoretical nuclear structure deals with the nuclear many-body problem in the very
�nite limit of particle number. In the non-relativistic limit, the goal is to solve the many-
body Schr�odinger equation with the nuclear Hamiltonian Ĥ:

Ĥ	 = E	: (1)

Unlike other areas of the many-body problem (atomic physics, condensed matter physics),
nuclear physics is still struggling to understand the origin of the force which produces
nuclear binding. Although it is clear that the nucleon-nucleon (NN) interaction has its
roots in quark-gluon dynamics, the microscopic derivation is not yet in place. To add
insult to injury, due to strong in-medium e�ects, additional complications arise when one
tries to derive the e�ective inter-nucleon interaction in the heavy nucleus. This brings us
to the �rst major scienti�c question pertaining to Eq. (1): What is the e�ective nuclear

Hamiltonian? In this context, some speci�c issues related to the RNB experimentation
are: What is the (N � Z) and mass dependence of the e�ective NN interaction? What
is the interaction dependence on spin degrees of freedom? What is the interplay between
strong, electromagnetic, and weak components of the NN force? What is the nuclear
matter equation of state?

The second major challenge pertaining to Eq. (1) { What is the nature of the nucleonic

matter? { concerns the properties of the many-body wave function 	. Here, the spe-
ci�c fundamental questions are: What is the microscopic mechanism of nuclear binding?
Which combinations of protons and neutrons make up a nucleus? What is the single-
nucleonic motion in a very neutron-rich envirovment? What are the collective phases of
nucleonic matter? What is the nature of collective modes of the nucleus (a �nite fermion
system having a pronounced surface)? What are relevant collective degrees of freedom?
How to understand microscopically the large-amplitude nuclear collective motion (fusion,
�ssion, coexistence phenomena)?

Coming back to RNB physics, there are many theoretical challenges related to nuclei
far from stability. Clearly, it is not \business as usual"! In many respects, weakly bound
exotic nuclei are indeed much more diÆcult to treat theoretically than well-bound systems
[2]. The major theoretical diÆculty and challenge is the treatment of the particle contin-
uum. The residual-interaction coupling to the continuum can in
uence nuclear binding,
e�ective interaction, and core polarization. It can give rise to a new class of collective phe-
nomena (soft modes). Continuum can also dramatically in
uence shell structure, many-
body correlations (such as pairing) and can impact the appearance of cluster structures.
Consequently, many cherished approaches of nuclear theory such as the conventional shell
model and the pairing theory must be modi�ed in order to properly take into account
unbound states. But there is also a splendid opportunity: the presence of low-lying
scattering states invites strong interplay and cross-fertilization between nuclear structure
and reaction theory. Many methods developed by reaction theory can now be applied to
structure aspects of loosely bound systems. And, of course, nuclear structure e�ects can
clearly manifest themselves in reactions involving exotic nuclei. Some examples, nicely
illuminating this point, are presented in the following sections.
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3. PAIRING IN NEUTRON-RICH NUCLEI

A proper theoretical description of weakly bound heavy systems requires taking into
account the particle-particle (p-p, pairing) correlations on the same footing as the particle-
hole (p-h) correlations, which { on the mean-�eld level { is done in the framework of the
theories based on the Hartree-Fock-Bogoliubov (HFB) method. In this method, it is
essential to solve the equations for the self-consistent densities and mean �elds in order to
allow the pairing correlations to build up with a full coupling to particle continuum [3,4].

Since in �nite nuclei no derivation of the pairing force from �rst principles is available
yet, there are many variations in the choice of pairing forces used in calculations. Un-
fortunately, for drip-line nuclei, in which the pairing e�ects are crucially important due
to the coupling to the continuum, the e�ective pairing interaction is not known. Re-
cently, we discussed this problem in a series of papers [6{8] within the coordinate-space
spherical HFB. In the actual HFB calculations based on the Skyrme forces in the p-h
channel (as, e.g., the SLy4 parametrization [9] used in our work), contact pairing inter-
action is usually used. Two di�erent forms have been used up to now { the volume type,
V Æ
vol(r; r

0) = V0 Æ(r � r0), or the surface type, V Æ
surf(r; r

0) = V0 [1 � (�(r)=�0)�] Æ(r � r0),
where �0=0.16 fm�3 is the saturation density, V0 de�nes the strength of the interaction,
and � governs the intensity of interaction at low densities [6]. (The origin of the terms
\volume" and \surface" has been discussed in Refs. [4,10].) In reality, however, the pair-
ing interaction is most likely of an intermediate character between the volume and surface
forms. In particular, the force which is a �fty-�fty mixture of both types,

V Æ
mix(r; r

0) =
1

2

�
V Æ
vol + V Æ

surf

�
; (2)

performs quite well [8,11] in reproducing the general mass-dependence of the odd-even
mass staggering parameter �(3) centered at odd particle numbers [12,13].

Figure 2 illustrates the impact of di�erent pairing interactions on neutron pairing gaps
in very neutron-rich isotones around N=82. The experimental data that exist for Z�50
do not indicate any de�nite change in neutron pairing with varying proton numbers.
However, the surface pairing interactions (bottom panels) give a slow dependence for
Z�50 that is dramatically accelerated after crossing the shell gap at Z=50. On the
other hand, the volume and intermediate-type pairing forces predict a slow dependence
all the way through to very near the neutron drip line. (It is worth noting that both
experimentally and theoretically neutron pairing decreases in Sn and Te isotopes as one
goes across the N=50 magic gap. We shall come back to this observation in Sec. 5.) It is
clear that measurements of only several nuclear masses on neutron-rich nuclei with Z<50
will allow us to strongly discriminate between the pairing interactions that have di�erent
density dependencies.

4. SELF-CONSISTENT MASS TABLE

Self-consistent methods based on density-dependent e�ective interactions have achieved
a level of sophistication and precision which allows analyses of experimental data for a
wide range of properties and for arbitrarily heavy nuclei. For instance, a self-consistent
deformed mass table has been recently developed [14,15] based on the Skyrme energy
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Figure 2. Comparison between the experimental neutron pairing gaps �N (upper left
panel) and the corresponding results of the spherical HFB method for the Skyrme SLy4
force [9] and �ve di�erent versions of the zero-range pairing interaction (see text).

functional. The resulting rms error on binding energies of 1700 nuclei is around 700 keV,
i.e., is comparable with the agreement obtained in the shell-correction approaches.

Such calculations require a simultaneous description of p-h, pairing, and continuum
e�ects { the challenge that only very recently could be addressed by mean-�eld methods.
Very recently we have developed methods [16{18] to approach the problem of large-scale
deformed HFB calculations by using the local-scaling point transformation that allows
us to modify asymptotic properties of the deformed harmonic oscillator wave functions.
Such calculations can be optimized to take advantage of parallel computing. (For ex-
ample, it takes only one day to calculate the full self-consistent even-even mass table
considering prolate, oblate, and spherical shapes!) This enables theorists to optimize ef-
fective interactions by adjusting their parameters to experimental binding energies and
other observables. While the results of calculations of a complete HFB mass table will
be reported in separate publications [18], Fig. 3 shows the calculated deformations j�j for
1553 particle-bound even-even nuclei with Z�108 and N�188 obtained with the SLy4
Skyrme interaction and the intermediate-type pairing force (2).

As one can see, there are several deformed regions around the neutron drip line where
theory predicts signi�cant deformations; hence the presence of rotational collectivity. The
calculations also predict a very interesting e�ect of long sequences of semi-magic nuclei
(e.g., Z=50 and N=82) intruding in the territory of unbound nuclei. This is the result of
vanishing pairing correlations, for which the Fermi energy coincides with the last occupied
level, while in the neighboring nuclei it is located higher.

5. COLLECTIVE MODES IN NEUTRON-RICH NUCLEI

Correlations due to pairing, core polarization, and clustering are crucial in exotic nuclei.
In neutron drip-line systems, skin excitations (soft modes, pygmy resonances) represent
new collective modes characteristic of weakly bound nuclei. Since the energy of the pigmy
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Figure 3. Ground-state quadrupole deformations j�j obtained in large-scale deformed
HFB calculations for particle-bound even-even nuclei with Z�108 and N�188. To pro-
duce such a mass/deformation table, it takes only one day on a modern parallel computer.

resonance in neutron-rich nuclei is close to the neutron separation energy, the presence of
soft vibrational modes is also important in the context of the astrophysical r-process [19].

Figure 4 demonstrates, however, that one does not need to go all the way to the neutron
drip line to see surprising deviations from well-established trends. The diagram shows
the systematics of experimental data for 2+1 states around 132Sn. Interestingly, both
excitation energies and B(E2) values exhibit an unusual pattern as one crosses N=82.
Namely, there is a striking asymmetry in the position of 2+1 levels in N=80 and 82 isotopes
of Sn and Te, and the B(E2; 0+ ! 2+1 ) rate in 136Te stays unexpectedly low [20], defying
common wisdom that the decrease in E2+

1
in open-shell nuclei must imply the increase in

B(E2; 0+ ! 2+1 ).
In order to explain this unusual patter, we performed calculations using the Quasi-

particle Random Phase Approximation (QRPA) with the separable quadrupole-plus-
pairing Hamiltonian [21]. Whenever possible, s.p. energies were taken from experiment
[22] (the remaining levels were calculated). For the two-body residual interaction used
in QRPA, we took the quadrupole-quadrupole forces (with both isoscalar and isovector
components) and the quadrupole pairing force [23]. The monopole pairing gaps were
taken from experiment [12] except for magic nuclei (Z=50 and/or N=82) where we have
used �=0.4 MeV. Since in QRPA we employed a large con�guration space, the B(E2)
rates were calculated using bare charges.

Our calculations reproduce well the experimental pattern displayed in Fig. 4 [21]. The
observed abnormal behavior in 136Te and 134Sn has been explained in terms of the re-
duction in the neutron pairing gap when going from N=80 to N=84 (resulting from the
lowered density of the neutron s.p. states above N=82). As seen in Fig. 4, for larger
values of �n > 0:7 MeV, one obtains the familiar pattern (E2+

1
increases while B(E2)

decreases), while at intermediate values of pairing both excitation energy and transition
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Figure 4. Left: experimental 2+1 levels in N=80,82,84 Sn and Te isotopes and measured
values of B(E2; 0+ ! 2+1 ) for even-even Sn, Te, Xe, Ba, and Ce isotopes around neutron
number N=82. Filled symbols indicate the recent RNB measurements at the HRIBF
facility at ORNL (from Ref. [20]). Right: energy and B(E2) of the 2+1 state in 136Te as a
function of the neutron pairing gap. The values of �n in 132;136Te are marked by arrows
(from Ref. [21]).

rate increase with �n. The idea of reduced neutron pairing in N=84 Sn and Te isotones
is consistent with the experimental odd-even mass di�erences and results of mixed-pairing
calculations shown in Fig. 2, and also explains the unusual lowering of the energies of 2+1
states in 136Te and 134Sn (which are primarily two-quasineutron in character).

6. CONTINUUM SHELL MODEL

The consistent treatment of continuum states, both in nuclear structure and reactions,
is an old problem which has been a playground of the continuum shell model (CSM)
[24,25]. In the CSM, including the recently developed Shell Model Embedded in the
Continuum (SMEC) [26], the scattering states and bound states are treated on an equal
footing. So far, most applications of the CSM, including SMEC, have been used to describe
limiting situations in which there is coupling to one-nucleon decay channels only. There
have been only a few attempts to treat the multi-particle case and, unfortunately, the
proposed numerical schemes, due to their complexity, have never been adopted in shell-
model calculations. Recently, we formulated and tested the multicon�gurational shell
model in the complete Berggren basis [27], the so-called Gamow Shell Model (GSM). (For
application to two-particle resonant states, see also Ref. [28].) By going into the complex
momentum (or energy) plane, GSM overcomes a number of diÆculties pertaining to the
traditional CSM; in particular, it can easily be applied to systems containing several
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valence neutrons.
The main idea behind GSM is the use of Gamow (or resonant) states [29] { generalized

eigenstates of the time-independent Schr�odinger equation with complex energy eigenval-
ues. These states correspond to the poles of the S-matrix in the complex energy plane
lying on or below the positive real axis; they are regular at the origin and satisfy purely
outgoing asymptotics.

In GSM, the single-particle (s.p.) basis corresponds to eigenstates of a spherical single-
particle �nite potential (such as a Woods-Saxon potential). The generalized completeness
relation involving Gamow states [30,31] can be written as:

X
n

j�njih~�nj j+
1

�

Z
L+

j�j(k)ih�j(k
�)j dk = 1; (3)

where �nj are the Gamow states carrying the s.p. angular momentum, j, n stands for
all the remaining quantum numbers, �j(k) are the scattering complex-momentum states,
and the contour L+ in the complex k-plane has to be chosen in such a way that all the
poles in the discrete sum in Eq. (3) are contained in the domain between L+ and the real
energy axis. (In practical calculations, the integral in Eq. (3) is discretized.) If the contour
L+ is chosen reasonably close to the real energy axis, the �rst term in (3) represents the
contribution from bound states and narrow resonances, while the integral part accounts
for the non-resonant continuum. Gamow resonances and the Berggren basis (3) have been
employed in a number of calculations involving one-body continuum [32]. Examples are
s.p. level density calculations [33] and studies of deformed proton emitters [34,35].

The crucial problem pertaining to the interpretation of the CSM results is the selection
of states associated with resonant excitations of the system. Bound states can be clearly
identi�ed, because the imaginary part of their energy must be zero. No equally simple
criterion exists for resonance states. Fortunately, the coupling between scattering states
and resonant states is usually weak; hence, one can determine the physical resonances by
considering �rst the subspace of Gamow states (the so-called pole expansion) and then
by adding the non-resonant continuum. In the following example of GSM calculations,
we shall consider the case of 6�9He with the inert 4He core and 2-5 active neutrons in
the p shell. (For details and more examples, including the chain of neutron-rich oxygen
isotopes, see Refs. [27,36].) Our aim is not to give the precise description of these light
nuclei (for this, one would need a realistic Hamiltonian and a large con�guration space),
but rather to illustrate the method and underlying features.

A description of the neutron-rich helium isotopes, including Borromean nuclei 6;8He,
is a challenge for the GSM. 4He is a well-bound system with the one-neutron emission
threshold at 20.58 MeV. On the contrary, the nucleus 5He, with one neutron in the p shell,
is unstable with respect to the neutron emission. Indeed, the J� = 3=2�1 ground state
of 5He lies 890 keV above the neutron emission threshold and its neutron width is large,
�=600 keV. The �rst excited state, 1=2�1 , is a very broad resonance (�=4 MeV) that lies
4.89 MeV above the threshold. In our GSM calculations, the states in 5He are viewed
as one-neutron resonances outside of the 4He core. For the s.p. �eld, we took a Woods-
Saxon potential and for the residual interaction we assumed the surface-delta interaction.
As seen in Fig. 5, GSM calculations reproduce the most important feature of 6He and
8He: the ground state is particle-bound, despite the fact that all the basis states lie in the
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continuum. In spite of a very crude Hamiltonian, rather limited con�guration space, etc.,
the calculated ground state energies reproduce surprisingly well the experimental data.
The neutron separation energy anomaly (i.e., the increase of the neutron separation energy
when going from 6He to 8He) is reproduced. Also, the energies of excited 2+1 states are
in fair agreement with the data. As discussed in Refs. [27,36], the contribution from the
non-resonant continuum to the ground state wave functions of Borromean systems 6He
and 8He is very large.

7. Conclusions

The main objective of this brief review was to discuss various challenges in theoretical
nuclear structure, especially in the context of RNB physics. There are many unique
features of exotic nuclei that give prospects for entirely new phenomena likely to be
di�erent from anything we have observed to date. New-generation data will be crucial in
pinning down a number of long-standing questions related to the e�ective Hamiltonian,
nuclear collectivity, and properties of nuclear excitations.

This conference is about new experimental tools for research in low-energy nuclear
physics. But also in nuclear theory we are witnessing dramatic progress both in tech-
nology and in methods. Microscopic nuclear physics calculations can be quantitative!
As one experienced physicist remarked some time ago, nuclear theorists prefer to solve
approximate (i.e., simple) models exactly or to solve exact (i.e., microscopic) models ap-
proximately rather than to do the real job. The time has come to start solving exact
models exactly...
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