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Abstract. This work presents the first continuum shell-model study of weakly bound neutron-rich
nuclei with several valence nucleons. For the single-particle basis, we take the complex-energy
Berggren ensemble representing the bound single-particle states, narrow resonances (Gamow
states), and the non-resonant continuum. In our calculations, we consider the shell-model Hamilto-
nian consisting of a one-body finite Woods-Saxon potential and a residual two-body interaction. The
proposed Gamow shell model, which is a straightforward extension of the traditional shell model
based on a discrete basis, is shown to be an excellent tool for the microscopic description of weakly
bound systems.

INTRODUCTION

It is a great pleasure to dedicate this paper to Rick Casten on the occasion of this
conference in his honor. The subject of our work, i.e., the shell-model treatment of
exotic nuclei, is of particular relevance to Rick’s anniversary. Firstly, the nuclear shell
model has been a guiding principle behind most of his scientific work [1]. Secondly,
the physics of exotic nuclei far from the beta stability line has been one of Rick’s main
scientific interests and activities [2].

In many respects, weakly bound nuclei are much more difficult to treat theoretically
than well-bound systems [3]. The major theoretical difficulty and challenge is the treat-
ment of the particle continuum. For weakly bound nuclei, the Fermi energy lies very
close to zero, and the decay channels must be taken into account explicitly. As a result,
many cherished approaches of nuclear theory such as the conventional shell model and
the pairing theory must be modified. But there is also a splendid opportunity: the explicit
coupling between bound states and continuum, and the presence of low-lying scattering
states invite strong interplay and cross-fertilization between nuclear structure and reac-
tion theory. Many methods developed by reaction theory can now be applied to structure
aspects of loosely bound systems. And, of course, nuclear structure effects can clearly
manifest themselves in reactions involving exotic nuclei.

The treatment of continuum states is an old problem which, in the context of excited
states near or above the decay threshold, has been a playground of the continuum shell
model (CSM) [4]. In the CSM, including the recently developed Shell Model Embedded
in the Continuum (SMEC) [5], the scattering states and bound states are treated on
an equal footing. So far, most applications of the CSM, including SMEC, have been
used to describe limiting situations in which there is coupling toone-nucleon decay



channels only. However, by allowing only one particle to be present in the continuum, it
is impossible to apply the CSM to ‘Borromean systems’ for whichA- and(A-2)-nucleon
systems are particle-stable but the intermediate(A-1)-system is not. Various approaches,
including the hyperspherical harmonic method or the coupled-channel approach, have
been developed to study structure and reaction aspects of three-body weakly bound
nuclei [6]. However, most of these models utilize the particle-core coupling which does
not allow for the exact treatment of core excitations and the antisymmetrization between
the core nucleons and the valence particles.

The reason for limiting oneself to only one particle in the continuum in the CSM
has been two-fold. First, the number of scattering states needed to properly describe
the underlying dynamics can easily go beyond the limit of what present computers can
handle. Second, treating the continuum-continuum coupling, which is always present
when two or more particles are scattered to unbound levels, is difficult. There have been
only a few attempts to treat the multi-particle case and, unfortunately, the proposed
numerical schemes, due to their complexity, have never been adopted in microscopic
calculations involving multiconfiguration mixing. Consequently, an entirely different
approach is called for. Recently, we formulated and tested the multiconfigurational shell
model in the complete Berggren basis [7], the so-called Gamow Shell Model (GSM).
(For application to two-particle resonant states, see also Ref. [8].) In this paper, GSM is
applied to systems containing several valence neutrons.

BERGGREN BASIS AND COMPLETENESS RELATIONS

The Gamow states (sometimes called Siegert or resonant states) [9] are generalized
eigenstates of the time-independent Schrödinger equation with complex energy eigen-
valuesE = E0� iΓ=2, whereΓ stands for the decay width (which is zero for bound
states). These states correspond to the poles of theS-matrix in the complex energy plane
lying on or below the positive real axis; they are regular at the origin and satisfy purely
outgoing asymptotics. Figure 1 shows the distribution of Gamow states in the complex
momentum plane.

In the following, we consider the Gamow states of a one-body spherical finite poten-
tial. The single-particle (s.p.) basis of Gamow states must be completed by means of a
set of non-resonant continuum states. This completeness relation [10, 11], reads:

∑
n
jφn jihφ̃n jj+

1
π

Z
L
+

jφj(k)ihφj(k
�)jdk = 1; (1)

whereφn j are the Gamow states carrying the s.p. angular momentumj, n stands for
all the remaining quantum numbers labeling Gamow states,φj(k) are the modified
scattering Gamow states, and the contourL+ in the complexk-plane has to be chosen in
such a way that all the poles in the discrete sum in Eq. (1) are contained in the domain
betweenL+ and the real energy axis (cf. Fig. 1). Ifun j(r) stands for the radial part of
φn j, thenũn j(r) = un j(r)

� andφ̃n j=φn j(u ! ũ). If the contourL+ is chosen reasonably
close to the real energy axis, the first term in (1) represents the contribution from bound
states and narrow resonances, while the integral part accounts for the non-resonant
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FIGURE 1. Schematic representation of the Gamow basis in the complex momentum plane. The
Gamow states (i.e., poles of the S-matrix) are indicated by dots: bound states (k = iγ), antibound states
(k = �iγ), decaying resonances (k = κ � iγ), and capturing resonances (k = �κ � iγ). The contour L
represents the non-resonant continuum (see Eq. 1).

continuum. A number of completeness relations similar to (1) were studied by Lind
[11]. In particular, if L+ coincides with the real axis, one obtains the well-known Newton
completeness relation involving bound and scattering states:

∑
n=bound

jφn jihφ̃n jj+
1
π

Z
R
jφj(k)ihφj(k

�)jdk = 1: (2)

There have been several applications of resonant states to problems involving contin-
uum [12], but in most cases the so-called pole expansion, neglecting the contour integral
in Eq. (1), was used. The importance of the contour contribution was investigated in
Refs. [13, 14] in the context of the continuum RPA with separable particle-hole inter-
actions where it was concluded that the non-resonant part must be accounted for if one
aims at a quantitative description. This can be achieved by discretizing the integral in
Eq. (1) [15]. In this work, we use the quadrature based on the four-point interpolation.
The number of discretization points in the non-resonant scattering continuum is denoted
by Ncont in the following.

In our study, Gamow states are determined using the generalized shooting method for
bound states which requires an exterior complex scaling [12]. The antisymmetric two-
particle wave functions jφ(1)

i1
φ(2)

i2
iJ are obtained in the usual way by coupling the s.p.

wave functions of the considered bound, resonance, and scattering Gamow states. The
radial integrals entering the Hamiltonian matrix elements were regularized separately
by an appropriate choice of the angle of the exterior complex scaling. The resulting
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FIGURE 2. Distribution of GSM states in the complex energy plane calculated for 18O (left; (two-
particle case) and 20O (right; four particle case). The bound and resonant states lie close to the real energy
axis; they are marked by large dots. The remaining states represent the non-resonant continuum. One- and
two-neutron thresholds are indicated.

(complex symmetrix) Hamiltonian matrix can be diagonalized using standard methods
[7].

SELECTION OF RESONANT STATES

The crucial problem pertaining to the interpretation of the CSM results is the selection
of states associated with resonant excitations of the system. Bound states can be clearly
identified, because the imaginary part of their energy must be zero. No equally simple
criterion exists for resonance states. Fortunately, the coupling between scattering states
and resonant states is usually weak; hence, one can determine the resonances using the
following two-step procedure. In the first step, the shell-model Hamiltonian is diago-
nalized in both (i) the full space including the contour, and (ii) the subspace of Gamow
states (pole expansion). In the second step, one identifies the eigenstates of (i) which
have the largest overlap with those of the second diagonalization. As a representative
example, Fig. 2 shows the distribution of shell-model energies in the complex energy
plane calculated for 18O and 20O. In both cases the bound states and resonances lie at,
or very close to, the real energy axis. The remaining states represent the non-resonant
continuum; their distribution varies with Ncont. On the other hand, bound and resonant
states are stable with respect to Ncont. All states below the one-neutron threshold (marked
as 1n) are bound. The states above the two-neutron (2n) threshold are unstable to one-
and two-neutron emission. As seen in Fig. 2, for 18O, the eigenstates forming the non-



resonant background align along regular trajectories in the complex energy plane [8] that
reflect the choice of the contour L+ in the momentum space. In the four-particle case,
20O, this regularity is practically lost.

EXAMPLES OF CALCULATIONS

In the following exploratory GSM calculations, we shall consider two cases: (i) 18�22O
with the inert 16O core and active neutrons in the sd shell, and (ii) 6�9He with the
inert 4He core and active neutrons in the p shell. Our aim is not to give the precise
description of these nuclei (for this, one would need a realistic Hamiltonian and a
larger configuration space), but rather to illustrate the method, its basic ingredients, and
underlying features. The details of these calculations will be published elsewhere [16].

The “Oxygen" case

The s.p. basis was generated by a Woods-Saxon (WS) potential with the radius
R0=3.05 fm, the surface diffuseness d=0.65 fm, the potential depth U0=–55.8 MeV, and
the strength of the spin-orbit term Uso=6.06 MeV. With this choice of parameters, the
single particle 0d5=2 and 1s1=2 states are bound with s.p. energies �4:14 MeV and
�3:27 MeV, respectively, and 0d3=2 is a resonance with the s.p. energy 0.9–i0.048 MeV.

Energies of these s.p. states are close to the s.p. states of 17O. The completeness relation
requires taking the s1=2, d5=2, and d3=2 non-resonant continuums. For the 1s1=2 and 0d5=2
bound states, their non-resonant continuums can be chosen along the real momentum
axis. Since, to the first order, the inclusion of these continuums should only result
in the renormalization of the effective interaction, they are ignored for the purpose
of the present exercise whose main focus is the neutron emission. On the contrary,
0d3=2 is a resonance state, so the associated contour has to be complex to produce the
correct energy width. The number of discretization points was Ncont=5. For the residual
interaction, we assumed the δ-force with the strength V0=-350 MeV fm3.

Figure 3 displays binding energies of 18�22O calculated in GSM. In spite of very sim-
ple interaction and rather limited configuration space, the agreement with experimental
data is good. Also quite reasonable is the predicted spectrum of 18O (Fig. 3, inset). In
particular, the states which are predicted to appear above the 1n threshold acquire a
positive width [7].

The “Helium" case

A description of the neutron-rich helium isotopes, including Borromean nuclei 6;8He,
is a challenge for the GSM. 4He is a well-bound system with the one-neutron emission
threshold at 20.58 MeV. On the contrary, the nucleus 5He, with one neutron in the p
shell, is unstable with respect to the neutron emission. Indeed, the Jπ = 3=2�1 ground
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FIGURE 3. Experimental (EXP) and predicted(GSM) binding energies of 18�22O. The inset shows the
calculated two-neutron spectrum of 18O compared to experimental data.

state of 5He lies 890 keV above the neutron emission threshold and its neutron width is
large, Γ=600 keV. The first excited state, 1=2�1 , is a very broad resonance (Γ=4 MeV) that
lies 4.89 MeV above the threshold. 6He, on the contrary, is bound with the two-neutron
emission threshold at 0.98 MeV and one-neutron emission threshold at 1.87 MeV. The
first excited state 2+1 at 1.8 MeV in 6He is neutron unstable with a width Γ=113 keV. In
our GSM calculations, the states in 5He are viewed as one-neutron resonances outside
of the 4He core. A good fit to 3=2�1 and 1=2�1 states in 5He is obtained by taking the
WS potential with R0 = 2 fm, d=0.65 fm, U0 = -47 MeV, and Uso = 7.5 MeV. With this
potential, one finds the single-neutron resonances p3=2 and p1=2 at E=0.745–i0.32 MeV
and E=2.13–i2.94 MeV, respectively. The number of discretization points was Ncont=5
for both partial waves. With this choice of Ncont=5 the accuracy of calculations (i.e., the
size of the false width) was of the order of 100 keV. For the residual interaction, we
assumed the surface-delta interaction (SDI) with the strength V0=-1670 MeV fm3 and
radius R=2 fm.

Our calculations reproduce the most important feature of 6He and 8He: the ground
state is particle-bound, despite the fact that all the basis states lie in the continuum. In
spite of a very crude Hamiltonian, rather limited configuration space, etc., the calculated
ground state energies reproduce surprisingly well the experimental data. The neutron
separation energy anomaly (i.e., the increase of the neutron separation energy when
going from 6He to 8He) is reproduced. Also, the energies of excited 2+1 states are in
fair agreement with the data. As discussed in Refs. [7, 16], the contribution from the
non-resonant continuum to the ground state wave functions of Borromean systems 6He
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FIGURE 4. Experimental (EXP) and predicted(GSM) binding energies of 6�9He as well as energies of
Jπ=2+ states in 6;8He. The resonance widths are indicated by shading.

and 8He is large. As seen in Table 1, the contributions from one and two particles in the
non-resonant continuum, L(1)

+
and L(2)

+
, dominate the structure of the ground-state wave

function of 8He.
TABLE 1. Squared complex amplitudes of
different configurations in 0+

1 and 2+1 states
of 8He. The sum of squared amplitudes of
all Slater determinants including n particles
in the non-resonant continuum (n=1,2,3,4) are
denoted by L(n)

+
.

c2 0+1 2+1
0p4

3=2 0.30–i1.32 0

0p3
3=20p1

1=2 0 0.81–i0.77

0p2
3=20p2

1=2 –0.06–i0.16 –0.01–i0.03

L(1)
+

1.60+i1.07 0.45 +i0.66

L(2)
+

–0.73+i0.63 –0.21+i0.16
L(3)
+

–0.13–i0.20 –0.03–i0.24

L(4)
+

–0.02–i0.01 �0

CONCLUSIONS

In conclusion, the complex energy Berggren ensemble is applied for the first time in
shell-model calculations for many-neutron states near the particle-emission threshold.
In addition to the successful inclusion of the continuum-continuum coupling, we suc-
ceeded in solving another principal problem of the GSM, i.e., the treatment of the non-



resonant part of the continuum. Another problem which has been solved in our work is
the selection of resonance states. As a result of the GSM diagonalization, one obtains a
multitude of states corresponding to the many-body continuum, some being resonances
and some representing the non-resonant background. Our work offers a simple prescrip-
tion on how to identify the resonance states.

The results of our pilot calculations are very encouraging. It is seen that the con-
tribution from the non-resonant continuum is important, especially for bound and near-
threshold states. In particular, pairing correlations due to the continuum-continuum scat-
tering can bind the ground states of 6;8He with a completely unbound basis provided by
the s.p. resonances of 5He. In all cases considered, calculations yield neutron resonances
above the calculated neutron threshold – a property that is not guaranteed a priori by the
formalism. Other applications of GSM, including the case of open proton and neutron
shells, are in progress.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department of Energy under Contract Nos.
DE-FG02-96ER40963 (University of Tennessee) and DE-AC05-00OR22725 with UT-
Battelle, LLC (Oak Ridge National Laboratory).

REFERENCES

1. Casten, R.F. Nuclear Structure from a Simple Perspective (Oxford University Press, Oxford 1990).
2. Nazarewicz, W. and Casten, R.F., Nucl. Phys. A 682, 295c (2001); Casten, R.F. and Sherrill, B.M.,

Prog. Part. Nucl. Phys. 45, S171 (2000).
3. Dobaczewski, J. and Nazarewicz, W., Phil. Trans. R. Soc. Lond. A 356, 2007 (1998).
4. Fano, U., Phys. Rev. 124, 1866 (1961); Mahaux, C. and Weidenmüller, H.A., Shell-model approach

to nuclear reactions (North-Holland, Amsterdam, 1969).
5. Bennaceur, K. et al., Nucl. Phys. A 651, 289 (1999); ibid. A 671, 203 (2000); Bennaceur, K. et al.,

Phys. Lett. B488, 75 (2000).
6. Danilin, B.V. et al., Nucl. Phys. A 632, 383 (1998); Nielsen, E. et al., Phys. Rep. 347, 373 (2001);

Esbensen, H. and Bertsch, G.F., Phys. Rev. C 59, 3240 (1999).
7. Michel, N., Nazarewicz, W., Płoszajczak, M. and Bennaceur, K., Phys. Rev. Lett. (2002), in press.
8. Betan, R.I. et al., Phys. Rev. Lett. (2002), in press.
9. Gamow, G., Z. Phys. 51, 204 (1928); Siegert, A.F.J., Phys. Rev. 56, 750 (1939).
10. Berggren, T., Nucl. Phys. A 109, 265 (1968); Nucl. Phys. A 389, 261 (1982).
11. Lind, P., Phys. Rev. C 47, 1903 (1993).
12. Vertse, T., Curutchet, P. and Liotta, R.J., Lecture Notes in Physics 325 (Springer Verlag, Berlin 1987),

p. 179; Dussel, G.G. et al., Phys. Rev. C 46, 558 (1992).
13. Vertse, T., Liotta, R.J. and Maglione, E., Nucl. Phys. A 584, 13 (1995).
14. Lind, P. et al., Z. Phys. A 347, 231 (1994).
15. Liotta, R.J. et al., Phys. Lett. B 367, 1 (1996); Vertse, T. et al., Phys. Rev. C 57, 3089 (1998).
16. Michel, N., Nazarewicz, W., Płoszajczak , M., and Okołowicz, J., to be published.


