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Broad Phenomenological Talk

•Strategies to Control Alloy Reaction Products
-Establishment of protective oxide layers
-Management of embrittling species
-Synthesis of functional surfaces (fuel cells, magnetic media)

•Bring Attention to Potential Utility of Overlooked
Phenomena Related to Oxidation Reactions in
Multi-Phase Alloys as a Basis for Breakthrough
Materials and Processes

•Not an Existing Program- Collection of Observations
Highlighting One Possible Direction for Fossil ARM
Effort (examples from Fossil, OTT, NASA, others)



Why a Talk Like This?

To Achieve Many Targeted Technological
Goals, Including Vision 21, 

We Will Require New Materials Design
Approaches and Processes



•Greater Opportunity to Co-Optimize Mechanical
Properties for Ambient- and High- Temperatures

- Toughening: ductile particles, interphase interfaces
- Strengthening: precipitate phases, oxide dispersions

•Multi-Phase Generally Viewed as Detrimental to
Protective Oxide Layer Formation to Resist Corrosion

-NOT ALWAYS THE CASE!
-Leverage thermodynamic and kinetic degrees of
freedom not available in single-phase systems

Manipulation of Multi-Phase
Phenomena as a Basis for Materials Design
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Oxidation Reactions in Multi-Phase Alloys
Yield an Incredible Range of Surfaces

•Cooperative: Single-Phase Reaction Product

•Independent (In-Place): Composite Surface Which Mimics
Underlying Alloy Structure

Two Limiting Cases



Present a Series of 
Phenomenological/Microstructural Examples 

Illustrating How Cooperative and 
Independent Reaction Modes Can be 

Manipulated to Produce
Interesting and Potential Useful Results



Establishment of Protective Oxide
Layers



Cr2O3

CrCr--CarbideCarbide--Depletion ZoneDepletion Zone

Protective Oxide Layer by Reservoir Effect
Light microscopy cross-section of Fe-15Cr-0.5C wt.% after

72 h at 850°C in oxygen (Durham, Gleeson, Young 1998)

CrCr--carbide dispersed Fe(Cr)carbide dispersed Fe(Cr)

•Classic example of cooperative oxidation
•Cr-carbides provide strengthening



Microstructure Important
Light microscopy cross-section of as-cast Fe-15Cr-0.5C wt.%

After 72 h at 850°C in oxygen (Durham, Gleeson, Young 1998)

FeOFeO + FeCr+ FeCr22OO44

Fe2O3

Coarse CrCoarse Cr--carbidecarbide
dispersionsdispersions

•Cr tied up in coarse, poorly distributed  carbides which results
in formation of less-protective Fe-oxides rather than Cr2O3

•Partitioning of Cr among two phases neutral (microstructure
optimized) or detrimental to oxidation



Dispersed Reservoir Concept- Addition of
Dispersoids to Create a Reservoir Effect

(Wright, Nagarajan, Stringer, et al. 1980’s-early 90’s)

SEM Cross-section of Mo-6Si-15Si3N4 wt.%: 1000°C,111h,Air
SiO2

Si-rich dispersions

MoO3 Volatilization

Accumulation of Oxidized
Si-Rich Dispersions

•Mo matrix and Si3N4 dispersions oxidize independently to
yield a SiO2 layer by matrix recession/particle accumulation



Won’t Artificial Dispersoids Degrade
Mechanical Properties?

•Not Necessarily!

•Can be Beneficial- e.g. BCC Refractory
Metals
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Displacement

10.7% Elongation

Tensile Behavior

Additions of MgO Ductilize Cr at
Room-Temperature

Microstructure (SEM)

Cr Matrix (light), MgO (dark)
MgCr2O4 Spinel (gray)

100 µm

(Scruggs, early 1960’s)

•Similar improvements in mechanical properties
reported for oxide-dispersed Mo

Cr-6MgO-0.5Ti wt.%

unalloyed Cr

Cr-6MgO-0.5Ti



Sulfur Map

Oxygen Map

5 µm

Secondary Mode SEM

*Nitrogen Map

Deleterious Tramp Impurities  Segregate to
Cr/Oxide-Dispersion Interfaces

Auger Maps of In-Situ Fractured Cr-6MgO-0.5Ti
(*Ti peak overlap issues)

•Cleans up Cr Grain Boundaries (other effects also important)
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1000°C in Dry Air

•Cr enrichment at alloy/scale interface shifts Al depletion path
towards Ti(Cr,Al)2 phase field-keeps less oxidation-resistant
Ti3Al and related phases from forming (cooperative effect)

Alloying to Create a Cooperative
Reservoir Effect

Al2O3

5 µm

Al2O3

Ti(Cr,Al)2 TiAl
(dark)

•Works for other noble alloying additions in Ti-Al (e.g. Fe,
Cu,Quadakkers et al. Ag effect)

SEM Cross-Section

•Not secondary gettering-Cr more noble in oxygen than Ti,Al



Management of Interstitial Dissolution
and/or Embrittlement  



Ti2Ni second phase(light)
α−Ti Matrix (dark)

8 µm

Nitrogen Penetration Limited by Ti2Ni 
Formation at Alloy/Scale Interface

SEM Cross-Section of Ti-10Ni at.%: 24 h, 50°C, N2-4H2

External Ti-Nitride layer

•Pure Ti exhibits nitrogen dissolution under external Ti-nitride

Ti2Ni layer (light)

•Ni enrichment (noble)/cooperative reaction results in Ti2Ni
nitrogen dissolution barrier under external Ti-nitride



Single-Phase Cr Solid Solution
Cr-1Ta-5Mo-0.2La at.%

Cr2Ta Laves Phase Reinforced
Cr-8Ta-5Mo-0.2La at.%

10 µm

Cr2O3-Based Scale

10 µm

Cr2N (dark)

Cr solid solution (dark)
Cr2Ta Laves Phase (light)

CrCr22OO33--Based ScaleBased Scale

SEM Cross-Sections After 1000 h at 900ºC in Air

Cr2N Subscale Formation Hindered When
Cr2Ta Laves Phase Present as Second Phase

•Cr2N subscale formation/grain boundary penetration
embrittles Cr 
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Cr-9.5Ta at.% After 120 h at 1100°C in Air 

Cr2Ta Laves  Phase (light)
Cr solid solution (dark)

SEM Backscatter Mode WDS Nitrogen Map
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10 µm

In-Place Internal Nitridation of Cr2Ta
Laves Phase Getters Nitrogen

•Keeps nitrogen from 
embrittling Cr matrix phase



Manipulation of Cr-Cr2Ta to Improve
Room-Temperature Fracture Toughness

Binary 

Microalloyed  

Cr-Cr2Ta
Eutectic

Macroalloyed  

Fracture Toughness
(MPa m1/2)

8-10

12-14

20-21

•Alloying addition site occupancy, phase partitioning,
eutectic composition/microstructure all key



Synthesis of Functional Surfaces



20 µm

°
N2 Cr2N

(Green)

Cr matrix
(Black)

Cr3PtN
(Red)

•Controlled synthesis of complex ceramic phase dispersion

2 µm

Independent Reaction Mode: Use 
Underlying Alloy Structure as a Template

•Formation of Cr3PtN Perovskite at Cr3Pt phase regions

Spectrum Image Phase MapSEM Cross-Section
Nitridation of Model Cr3Pt-Dispersed Cr Alloy

Cr(dark)
Cr3Pt (light)



SEM Cross-Section of Nitrided 99Fe-1Nd at.%

•Coarse structure derived from arc-cast/annealed material
(try non-equilibrium processing to get nano metal precipitates)

Independent Mode Nitridation of Fe17Nd2
Dispersed Fe for Magnetic Applications

•Goal is hard magnetic intermetallic nitride nanodispersions
in hard/soft/non magnetic simple ceramic or metallic matrices

Nitrided Fe (dark)

Fe Metal (light gray)

Nitrided Fe17Nd2
(white dispersion)

Nitrogen

10 µm



800 nm

In-Situ Cermet Formation by Independent
Mode Oxidation of Si-Ag Thin Film
SEM Surface of Si-Ag Thin Film After Oxidation

(Si and Ag immiscible)

Ag “Balls”
(light)

SiO2 Matrix
(dark)

•Potential solid oxide fuel cell metal interconnect coating???
-SiO2 for oxidation protection
-Through thickness Ag for electrical contact

•Mechanism likely also involves Ag outward diffusion



Reactions in Multi-Phase Structures
Provide Opportunities for Breakthrough

Materials Development

•Many details, subtleties broadbrushed
-Happy to discuss specifics of all examples given

•Point is: Reactions in multi-phase systems involve
spectacular range of interesting and potentially
useful phenomena unattainable using conventional
approaches

-Worthy of consideration and further study


