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ABSTRACT

Hydraulic systems are widely used in manufacturing
processes and transportation systems where energy intensive op-
erations are performed and “machine” control is vital. A vari-
ety of flow control products exist including manual directional
control valves, proportional directional control valves, and servo-
valves. The selection of a control valve actuation strategy is de-
pendent on the system response requirements, permissible pres-
sure drop, and hardware cost. Although high bandwidth servo-
valves offer fast response times, the higher expense, susceptibil-
ity to debris, and pressure drop may be prohibitive. Thus, the
question exists whether the economical proportional directional
control valve’s performance can be sufficiently enhanced using
nonlinear control strategies to begin approaching that of servo-
valves. In this paper, exponential tracking control of a hydraulic
cylinder and proportional directional control valve, with spool
position feedback, is achieved for precise positioning of a me-
chanical load. An analytical and empirical mathematical model
is developed which describes the transient behavior of the inte-
grated components. A nonlinear backstepping control algorithm
is designed to accommodate inherent system nonlinearities.

1THIS RESEARCH WAS SUPPORTED IN PART BY THE EU-
GENE P. WIGNER FELLOWSHIP PROGRAM OF THE OAK
RIDGE NATIONAL LABORATORY (ORNL), MANAGED BY UT-
BATTELLE, LLC, FOR THE U.S. DEPARTMENT OF ENERGY
(DOE) UNDER CONTRACT DE-AC05-00OR22725 AND IN PART
BY THE U.S. DOE ENVIRONMENTAL MANAGEMENT SCI-
ENCES PROGRAM (EMSP) PROJECT ID NO. 82797 AT ORNL,
AND BY U.S. NSF GRANT DMI-9457967, ONR GRANT N00014-99-
1-0589, A DOC GRANT, AND AN ARO AUTOMOTIVE CENTER
GRANT.

1 INTRODUCTION

A wide range of industries that utilize hydraulic sys-
tems, such as off-road construction and agricultural equip-
ment manufacturers, as well as the machine tool industry,
are continually demanding decreased package sizes, finer
system control, faster response, and multi-tasking systems
without added expense. For example, forestry machines
are required to navigate difficult terrain, cultivate timber,
and prepare the soil for replanting under confined operating
conditions (Papadopoulos, 1997). Farm implements such as
combines, harvesters, and planters require nonlinear speed
and position control of the power-take-off shaft as a result
of time varying loads. Automated manufacturing systems
use multi-axis rotating machining centers frequently located
on shop floors where space is at a premium. Finally, air-
craft control systems require responsive compact hydraulic
systems to reliably position the landing gear, flaps, and rud-
ders. Electrically actuated fluid valves afford engineers the
opportunity to regulate hydraulic systems under computer
control for enhanced operation and diagnostics. Two of the
more common hydraulic actuation valves available are the
servo-solenoid and the traditional two-stage flapper/nozzle
servo-valve.

The servo-solenoid valve integrates a proportional
solenoid assembly in direct contact with the main valve
spool. The generated solenoid force is typically proportional
to the armature current which is dependent on the sup-
plied voltage. Once the proportional solenoid armature has
moved through its approach zone, the force generated for a
given current will be approximately constant. The desired
spool position is obtained by balancing the proportional
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solenoid force against a calibrated opposing spring force.
Spool position feedback is achieved with a linear variable
displacement transducer (LVDT) in direct contact with the
main spool. Valves of this category are sometimes referred
to as “stroke” controlled solenoids (Tonyan, 1985). While
servo-solenoid valves are smaller in size (i.e., one stage), the
spool overlap or dead band is generally greater (although
valves may be purchased with zero dead band). However,
the servo-solenoid valve may be as much as three times less
expensive to manufacture, is well suited for applications
where fluid contamination is prevalent, and has very low
pressure losses in comparison to a conventional servo-valve
(Yeaple, 1990).

The two stage servo-valve utilizes a torque motor and
“flapper” configuration where the flapper moves against one
of two orifices. A pressure differential is created across the
second stage’s main spool which results in the spool shifting
to the desired position. Mechanical feedback is transmitted
back through the flapper to the torque motor which per-
mits the main spool-valve position to be adjusted. One ad-
vantage of the servo-valve is the small moving mass which
results in a higher natural frequency and faster response
time. The disadvantages of flapper type servo-valves in-
clude envelope size restrictions, manufacturing costs due to
tight machining tolerances, low tolerance for fluid contami-
nation, and high pressure losses. The two stage servo-valve
disadvantages have motivated engineers to consider using
the servo-solenoid valve in fluid power designs.

A variety of control architectures have been pro-
posed and applied to regulate the operation of nonlin-
ear hydraulic systems. The classical proportional-integral-
derivative (PID) control technique generally results in poor
tracking for higher frequency fluid applications. During the
past decade, several high precision controllers have been
designed which consider the underlying nonlinear system’s
dynamics. Alleyne (1995) developed an adaptive sliding
mode controller for use with active vehicle suspension sys-
tems. Bu (2000) developed a robust controller that con-
siders parametric uncertainties while achieving asymptotic
output tracking. Linear control theory was applied by Bo-
brow (1995) to design an adaptive hydraulic servo-valve
controller using full-state feedback for simultaneous para-
meter identification and tracking control. Vossoughi (1995)
created, and experimentally verified, a globally lineariz-
ing feedback control law for electrohydraulic systems which
demonstrated uniform response across a wider range of op-
erating conditions. Gamble (1994) presents a comparison
of sliding mode control with state feedback and PID con-
trol for proportional solenoid valves. The sliding mode con-
troller exhibited the best overall performance in terms of
steady-state error, response time, overshoot, and symme-
try.

Alleyne (1996) developed a Lyapunov-based control al-
gorithm that compensates for parametric uncertainty in the
dynamic model of a two-stage servo-valve undergoing force
tracking. Plummer (1996) applied a self-tuning adaptive
controller to an electrohydraulic positioning system with
varying load stiffness and supply pressure. A nonlinear
adaptive learning algorithm was proposed by Zheng (1998)
for a proportional valve to accommodate valve dead zones,
valve flow saturation, and cylinder seal friction. Sohl (1999)
studied friction compensation using a Lyapunov function
that provided exponentially stable force and position tra-
jectory tracking. Adaptive robust controllers have been de-
signed by Bu (1999) and Yao (2000) for electrohydraulic
systems with parametric and nonlinearity uncertainties to
track prescribed outputs. Recently, the nonlinear charac-
teristics of proportional directional control valves have been
studied by Bu (2000) without consideration of the valve dy-
namics for simplicity. Although the previous control strate-
gies have successfully been applied to hydraulic systems, a
new control strategy is designed and investigated in this
paper as a means for performance improvements. That
is, rather than utilizing a first order approximation as in
many of the previous results (e.g., (Alleyne, 1996)), per-
formance improvements are investigated by developing a
control strategy based on an approximation of the non-
linear fluid flow dynamics. By developing a differentiable
approximation of the nonlinear fluid flow dynamics, inte-
grator backstepping techniques can be utilized to develop a
controller for the full order system. Specifically, by using
Lyapunov-based design and analysis techniques, exponen-
tial tracking of the hydraulic cylinder position is achieved.

This paper is organized as follows. In Section 2, be-
havioral models for the electrical, hydraulic, and mechani-
cal system components are developed. Section 3 introduces
the nonlinear controller design and analysis. Concluding
remarks are presented in Section 4.

2 BEHAVIORAL MODELS

The behavioral models for the multiple domain electro-
hydraulic and mechanical system can be partitioned into
three coupled subsystems: electrical (solenoid dynamics),
hydraulic (spool valve dynamics), and mechanical (cylinder
dynamics). Figures 1 and 2 illustrate an experimental sys-
tem which corresponds to a general hydraulic system featur-
ing integrated translational and rotational actuators; in this
application, only the hydraulic cylinder shall be considered.
The modeled portion of the system consists of a Bosch NG6
servo-solenoid control valve (e.g., nonlinear solenoid and
main valve spool dynamics) and a Miller hydraulic cylin-
der with an attached mechanical load (Hardwick, 1984). To
develop the underlying system dynamic descriptions, funda-
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mental hydraulic, electrical, and mechanical concepts shall
be applied.
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Figure 1. HYDRAULIC EXPERIMENTAL SYSTEM CONFIGURATION

Figure 2. EXPERIMENTAL TEST CELL WITH A BOSCH NG6 SERVO

SOLENOID VALVE AND SPOOL SENSOR

2.1 SOLENOID AND SPOOL DYNAMICS

The resistor-inductor circuit that electrically models
the solenoid is given by the following expression

VS = VL +Ri (1)

where VS(t) ∈ R denotes the supply voltage, VL(t) ∈ R de-
notes the voltage drop across the solenoid, R ∈ R denotes
the armature resistance, and i(t) ∈ R denotes the measur-
able solenoid current. Motivated by the desire to relate the
electrical dynamics given in (1) to the mechanical dynam-
ics of the solenoid valve, the following relationship can be
developed (Vaughan, 1996)

Fg = h(λ
2, z) (2)

where Fg(t) ∈ R denotes the force generated by the solenoid,
and λ(t) ∈ R denotes the solenoid flux linkage that can be
related to VL(t) of (1) by using Faraday’s Law as follows

λ = N

Z
dΦ

dt
dt =

Z
VLdt (3)

where Φ(t) ∈ R denotes the magnetic flux and N ∈ R de-
notes the number of turns on the solenoid coil.

The expressions given in (1-3) relate the electrical dy-
namics to the force generated by the solenoid. Since the
force generated by the solenoid acts on the main spool valve
to control fluid flow within the attached hydraulic actuator,
the force generated by the solenoid is also coupled to the
electrical dynamics. Specifically, by applying Newton’s law
to the system shown in Figure 3, the spool valve dynamics
can be related to Fg(t) as follows (Vaughan, 1996)

z̈ =
1

ms
(−bsż − ksz + Fg + Fflow) (4)

where z(t), ż(t), z̈(t) ∈ R denote the spool position, ve-
locity, and acceleration, respectively, the constant, known
coefficients ks, bs ∈ R denote the spool return spring stiff-
ness and the spool damping constant, respectively, ms ∈ R
denotes the spool mass, and Fflow(t) ∈ R denotes the flow
force through a constriction (Wright, 1997). To facilitate
the subsequent control development, the spool valve dy-
namics are rewritten in the following simplified form

z̈ =
1

ms
(u−Ns) (5)

where u (t) = Fg(t) denotes the subsequently designed con-
trol force applied by the solenoid to the spool, Ns (z, ż) ∈ R
is the spring/damping term which may be expressed as fol-
lows

Ns = bsż + ksz (6)
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and the constriction fluid flow force has been neglected for
simplicity.
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Figure 3. HYDRAULIC VALVE SPOOL AND CYLINDER ASSEMBLY FOR

MODEL DEVELOPMENT

Remark 1. Due to the physical construction of the cylinder,
the spool position is restricted to a certain region; hence, it
is clear that z(t) ∈ L∞.
Remark 2. As stated in Merritt (1967), the steady-state and
transient contributions to the fluid flow force through a con-
striction may be defined as

Fflow = 2Cdwz (∆P ) cosφ+ Cdwl
p
2ρ |∆P |ż (7)

+
Cdwlzp
(2/ρ) |∆P |

d

dt
(∆P )

where ρ ∈ R is the fluid density, w ∈ R denotes the area
gradient of the orifice, Cd ∈ R is the discharge coefficient,
φ ∈ R is the flow angle, l ∈ R is the axial distance between
the incoming and outgoing flow, and ∆P ∈ R is the pressure
difference across the constriction.

2.2 CYLINDER DYNAMICS

The governing equation for the hydraulic cylinder dis-
placement must consider both the hydraulic and mechanical
forces such that

ẍ =
1

mL
(PPAP − PRAR − bLẋ− kLx− FL) (8)

where x(t), ẋ(t), ẍ(t) ∈ R represent the position, velocity,
and acceleration of the cylinder piston, respectively, PP (t),
PR(t) ∈ R are the respective piston and rod side cylinder
pressures (acting on respective cylinder areas denoted by
AP , AR ∈ R), and FL ∈ R denotes a constant externally ap-
plied load on the cylinder. The known, constant coefficients
bL, kL ∈ R given in (8) represent damping and compliance

elements within the system (including damping and com-
pliance effects by the load). To facilitate the subsequent
control development, the cylinder dynamics are rewritten
in the following simplified form

ẍ =
1

mL
(F −N) (9)

where N (x, ẋ) ∈ R is the spring/damping forces given by
the following expression

N = bLẋ+ kLx+ FL (10)

F (PP , PR) ∈ R denotes the force applied by the hydraulic
flow control valve and is defined as follows

F = PPAP − PRAR. (11)

The piston and rod side cylinder pressures given in (8)
and (11) are governed by the following differential expres-
sions (Merritt, 1967)

ṖP =
βe
Apx

(Qp −Apẋ− Cip(PP − PR)− CepPP ) (12)

ṖR =
βe

AR(L− x)(−QR +ARẋ+ Cip(PP − PR)− CepPR)
(13)

where Cip, Cep ∈ R denote known, constant, internal, and
external leakage coefficients, respectively, and βe ∈ R is
the known effective bulk modulus. L ∈ R is the length
of the cylinder. The fluid flow entering and exiting the
cylinder given in (12) and (13), denoted by QP (z, PP ),
QR(z, PR) ∈ R, are derived from the application of flow
continuity between the cylinder and the directional valve as
follows (Merritt, 1967)

QP = kP z
p
∆PP , ∆PP =

½
PS − PP for z > 0
PP − PT for z < 0 (14)

QR = kRz
p
∆PR, ∆PR =

½
PR − PT for z > 0
PS − PR for z < 0 (15)

where PS , PT ∈ R represent the respective supply and tank
pressures.
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Remark 3. The hydraulic cylinder is assumed to be con-
structed such that some volume always remains in the rod
and piston sides of the cylinder due to the presence of a
small amount of residual fluid that prevents the complete
retraction or extension of the piston. Based on this assump-
tion, it is clear that the following inequalities hold

δ1 < x < δ2,∀δ1 > 0, δ2 < L (16)

and hence, potential singularities in the fluid dynamics
given in (12) and (13) due to zero chamber volume are
avoided.

The discontinuous nature of the nonlinear fluid flow dy-
namics given in (12-15) have inhibited the ability of previ-
ous control designs to address the full order model given by
(9-15). For example, the discontinuous structure of (12-15)
restricts the use of design tools such as integrator backstep-
ping. To address this issue, researchers typically approxi-
mate the fluid dynamics by a first order system, potentially
limiting the performance of the control structure. Moti-
vated by the desire to address the full order dynamics as
a means for improved performance, we develop a differen-
tiable approximation for the dynamics given in (12-15) as
follows

ṖP =
βe
Apx

(kP fsP z +NP ) (17)

ṖR =
βe

AR (L− x) (−kRfsRz +NR) (18)

where the fluid flow variables fsP (PP , z), fsR (PR, z) ∈ R
approximate the variables QP (z, PP ) and QR(z, PR) of (14)
and (15) as follows

fsP = β0 +
β1e

γz − 1
eγz + 1

(19)

fsR = β2 +
β3e
−γz − 1

e−γz + 1
(20)

and NP (ẋ, PP , PR), NR (ẋ, PP , PR) ∈ R are defined as

NP = −AP ẋ− Cip (PP − PR)− CepPP (21)

NR = ARẋ+ Cip (PP − PR)− CepPR. (22)

The coefficients β0 (PP ) , β1 (PP ) , β2 (PR) , β3 (PR) ∈ R
given in (19) and (20) are defined as follows

β0 = 1 +
p
PP − PT (23)

β1 =
p
PS − PP −

p
PP − PT − 1 (24)

β2 = 1 +
p
PR − PT (25)

β3 =
p
PS − PR −

p
PR − PT − 1 (26)

where the supply and tank pressures are assumed to satisfy
the following inequalities

PS > max (PP , PR) , PT < min (PP , PR) (27)

and γ ∈ R denotes a constant, known modeling coefficient.
Figure 4 illustrates that (19) and (20) provide a differen-
tiable approximation of the discontinuous terms

√
∆PP and√

∆PR of (14) and (15), respectively. In Figure 4,
√
∆PP ,√

∆PR, fsP (PP , z), and fsR (PR, z) are plotted with PP (t)
and PR(t) held constant while z(t) is varied with the mod-
eling parameter γ = 1000.

CONTROLLER DESIGN

The control objective in this paper is to force the pis-
ton position of a hydraulic cylinder to track a time varying
reference trajectory. To quantify the control objective, the
piston tracking error e(t) ∈ R is defined as

e = xd − x (28)

where xd(t) ∈ R and its first five time derivatives are as-
sumed to be bounded. To facilitate the controller design
and stability analysis, a filtered tracking error, denoted by
r (t) ∈ R, is defined as

r = ė+ αe. (29)
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As indicated in the model development given in Sec-
tion 2, the solenoid control force u(t) is indirectly related
to the cylinder piston position through the spool dynam-
ics; hence, as a means to relate u(t) to the cylinder piston
position, the subsequent control design is based on the in-
tegrator backstepping approach. Specifically, from (9) it is
evident that the position of the cylinder piston is related to
the control valve force F (t). Since the control valve force
cannot be directly actuated, the subsequent control design
will first target the development of a desired control valve
force, denoted by Fd(t) ∈ R, and then target eliminating
the mismatch between the actual and desired control value
forces. To quantify the mismatch between the actual and
desired control value forces, a force tracking error signal
ηf (t) ∈ R is defined as

ηf = Fd − F. (30)

By backstepping on the force tracking error signal, the time
derivative of the desired control valve force can be related
to a function of the spool position. Motivated by the desire
to mitigate the force tracking error given in (30), a desired
spool position function, denoted by fd(t) ∈ R, can then be
designed, where the mismatch between the actual and de-
sired spool position functions is quantified through a spool
tracking error-like signal ηz(t) ∈ R defined as

ηz = fd − βegz (31)

where z(t) and βe are given in (4), (12), and (13), and

g (x, z, PP , PR) ∈ R is defined as follows

g =
kP fsP
x

+
kRfsR
L− x (32)

where fsP (·) , fsR (·) are defined in (19) and (20), respec-
tively. After backstepping on ηz(t), the time derivative of
the desired spool function can be related to the spool ve-
locity. Motivated by the desire to mitigate the tracking
error given in (31), a desired spool velocity, denoted by
żd(t) ∈ R, can then be designed, where the mismatch be-
tween the actual and desired spool velocities is quantified
through a spool velocity tracking error η1(t) ∈ R defined as
follows

η1 = żd − ż. (33)

After backstepping on the spool velocity tracking error, the
time derivative of the desired spool velocity can be related to
the solenoid control force through (5); hence, u(t) can then
be designed to mitigate the backstepping error signals and
to achieve the control objective. In the following sections,
the error system development for r(t), ηf (t), ηz(t), and
η1(t) is provided along with the control designs for Fd(t),
fd(t), żd(t), and u(t).

2.3 CONTROL DEVELOPMENT

To develop the open-loop error system for r(t), we take
the time derivative of (29) and multiply the resulting ex-
pression by mL as follows

mLṙ = mL (ẍd + αė)− Fd + ηf +N (34)

where (9), (28), and (30) were utilized. Based on the open-
loop error system given in (34) and the subsequent stability
analysis, the desired control valve force is designed as follows

Fd = mL (ẍd + αė) +N + k1r. (35)

After substituting (35) into (34) for Fd(t) and cancelling
common terms, the following closed-loop error system for
r(t) can be obtained

mLṙ = ηf − k1r. (36)

After taking the time derivative of (30) and utilizing
(31), the following open-loop error system for ηf (t) can be
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obtained

η̇f = Ḟd − βe

µ
NP
x
− NR
L− x

¶
− fd + ηz (37)

where we utilized the fact that the time derivative of the
control valve force can be expressed as follows

Ḟ = βe

µ
NP
x
− NR
L− x + gz

¶
(38)

where z(t) and g(·) are defined in (5) and (32), respectively.
Based on the structure of (37) and the subsequent stability
analysis, fd (t) is designed as follows

fd = Ḟd − βe

µ
NP
x
− NR
L− x

¶
+ k2ηf + r (39)

where Ḟd(t) can be determined by taking the time derivative
of (35) and utilizing (9), (10), (28), and (29) as follows

Ḟd = mL

³
x
(3)
d + αẍd

´
+

µ
bL
mL
− α

¶
(F −N) (40)

+kLẋ+
k1
mL

(ηf − k1r) .

After substituting (39) into (37) for fd (t) and canceling
common terms, the following closed-loop error system for
ηf (t) can be obtained

η̇f = ηz − k2ηf − r. (41)

After taking the time derivative of (31), the following
open-loop error system for ηz (t) can be obtained

η̇z = ḟd − βe (gż + ġz) (42)

where

ġ = (∇xg) ẋ+ (∇zg) ż + (∇PP g) ṖP + (∇PRg) ṖR (43)

where the notation ∇xy (·) denotes the partial derivative of
y (·) with respect to x. The partial derivatives∇xg(x, z, PP ,
PR), ∇zg(x, z, PP , PR), ∇PP g(x, z, PP ), ∇PRg(x, z, PR) ∈
R given in (43) can be determined as follows

∇xg = kRfsR

(L− x)2 −
kP fsP
x2

(44)

∇zg = kPγe
γz (β1 + 1)

x (eγz + 1)2
− kRγe

−γz (β3 + 1)
(L− x) (e−γz + 1)2 (45)

∇PP g =
kP

2x (eγz + 1)

µ
1√

PP − PT
− eγz√

PS − PP

¶
(46)

∇PRg =
kR

2(L− x) (e−γz + 1)
µ

1√
PR − PT

− e−γz√
PS − PR

¶
.

(47)
After utilizing (33), the open-loop error system given in (42)
can be rewritten as follows

η̇z = ḟd − βe (zξ + ζ żd − ζη1) (48)

where ζ (x, z, PP , PR), ξ
³
z, x, PP , PR, ẋ, ṖP , ṖR

´
∈ R are

defined as follows

ζ = (∇zg) z + g (49)

ξ = (∇xg) ẋ+ (∇PP g) ṖP + (∇PRg) ṖR. (50)

Based upon the structure of (48) and the subsequent stabil-
ity analysis, the desired spool velocity is designed as follows

żd =
1

βeζ

³
ḟd − βezξ + k3ηz + ηf

´
(51)

where ḟd(t) is given by the following expression

ḟd = F̈d − βe

Ã
−NP
x2
− NR

(L− x)2
!
ẋ (52)

+
βe
mL

µ
AP
x
+

AR
L− x

¶
(F −N)

+βe

µ
Cip + Cep

x
+

Cip
L− x

¶
ṖP

−βe
µ
Cip
x
+
Cip + Cep
L− x

¶
ṖR

+k2 (ηz − k2ηf − r) + 1

mL
(ηf − k1r)
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where F̈d(t) can be determined as follows

F̈d = mL

³
x
(4)
d + αx

(3)
d

´
(53)

+

µ
bL
mL
− α

¶µ
βe

µ
NP
x
− NR
L− x + gz

¶
− kLẋ

¶
+
1

mL

µ
kL − bL

µ
bL
mL
− α

¶¶
(F −N)

+
k1
mL

µ
ηz − k2ηf − r − k1

mL
(ηf − k1r)

¶
.

After substituting (51) into (48) for żd(t), and canceling
common terms, the following closed-loop error system for
ηz (t) can be obtained

η̇z = βeζη1 − k3ηz − ηf . (54)

After taking the time derivative of (33) and making use
of (5), the open loop dynamics for η1 (t) can be determined
as follows

η̇1 = z̈d − 1

ms
(u−Ns) . (55)

Based upon the open-loop tracking error system given by
(55) and the subsequent stability analysis, the control input
u (t) is designed as follows

u = ms (z̈d + βeζηz + k4η1) +Ns (56)

where z̈d(t) denotes the time derivative of the desired spool
velocity given in (51) (see the appendix for an explicit ex-
pression). After substituting (56) into (55) for u(t) and
canceling common terms, the closed-loop error system for
η1 (t) can be determined as follows

η̇1 = −βeζηz − k4η1. (57)

2.4 STABILITY ANALYSIS

Theorem 1. The backstepping controller given in (35), (39),
(51), and (56) ensures exponential cylinder piston position
tracking in the sense that

|e (t)| ≤ λ0 |e (0)| exp(−λmin (k1, k2, k3, k4) t) (58)

provided that the following sufficient condition is satisfied

|z(t)| ≤ 1

γ
(59)

where λ0,λ ∈ R are some positive constants and γ is given
in (19) and (20).

Proof: To prove (58), we define a nonnegative function
V (t) ∈ R as follows

V =
1

2
mLr

2 +
1

2
η2f +

1

2
η2z +

1

2
η21 (60)

where V (t) can be lower and upper bounded as in the fol-
lowing inequalities

λ1 kΨk2 ≤ V ≤ λ2 kΨk2 (61)

where λ1,λ2 ∈ R are positive bounding constants and
Ψ(t) ∈ R4 is defined as follows

Ψ =
£
r ηf ηz η1

¤T
. (62)

After taking the time derivative of (60), substituting for the
closed-loop error systems given in (36), (41), (48), and (57),
and cancelling common terms, the following expression can
be obtained

V̇ ≤ −min (k1, k2, k3, k4) kΨk2 (63)

where (62) was utilized. After utilizing (61), the expression
given in (63) can be rewritten as follows

V̇ ≤ − 1
λ2
min (k1, k2, k3, k4)V. (64)

Standard arguments can now be invoked to solve the differ-
ential inequality given in (64) as follows

V (t) ≤ V (0) exp(− 1
λ2
min (k1, k2, k3, k4) t). (65)

Based on (61) and (65), the following inequality can now be
developed

kΨ(t)k ≤ kΨ(0)k
r

λ2
λ1
exp(− 1

λ2
min (k1, k2, k3, k4) t) (66)

where Ψ(t) was defined in (62).
Based on (62), (66), and the previous develop-

ment, we can now prove that all of the control sig-
nals are bounded. Specifically, from (62) and (66) it
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is clear that r(t), ηf (t) , ηz (t) , η1 (t) ∈ L∞. Given that
r(t), ηf (t) , ηz (t) ∈ L∞, we can use (36) and (41) to prove
that ṙ (t) , η̇f (t) ∈ L∞. Standard techniques can now be
used along with (29), (28), and the fact r (t) , ṙ (t) ∈ L∞ to
prove that e (t) , ė (t) , ë (t) ∈ L∞. Based on the fact that
e (t) , ė (t) , ë (t) ∈ L∞ and the assumption that xd (t), ẋd (t),
ẍd (t), x

(3)
d (t), x

(4)
d (t), x

(5)
d (t) ∈ L∞, (28) can be used to

prove that x(t), ẋ(t), ẍ(t) ∈ L∞. From (10) and the fact
that x(t), ẋ(t), ẍ(t) ∈ L∞, we can now prove that N (·),
Ṅ (·) ∈ L∞. Given that r(t), ė(t), ẍ(t), N (·) ∈ L∞, (9) and
(35) can now be used to prove that F (·), Fd (t) ∈ L∞. From
the assumption given in (27) where PS , PT are known posi-
tive constants, we can conclude a priori that PP (·), PR(·) ∈
L∞. Based on the fact that PP (·), PR(·) ∈ L∞, we can use
(23-26) to prove that β0 (PP ) , β1 (PP ) , β2 (PR) , β3 (PR) ∈
L∞. From the previous boundedness statements and the
assumption that z(t) ∈ L∞, we can use (19) and (20) to
prove that fsP (·), fsR (·) ∈ L∞. Based on the fact that
fsR (·) ∈ L∞, we can utilize (32) to prove that g(·) ∈ L∞.
Given that ẋ(t), PP (·), PR(·) ∈ L∞, (21) and (22) can be
used to prove that NP (·), NR (·) ∈ L∞. Based on the fact
that F (·), N(·), ẋ(t), ηf (t), r(t) ∈ L∞, (40) can be utilized
to prove that Ḟd(t) ∈ L∞; hence, from (39) we can now
prove that fd(t) ∈ L∞. After taking the time derivative
of (30) and utilizing the facts that η̇f (t), Ḟd(t) ∈ L∞, it
is straightforward that Ḟ (·) ∈ L∞. Because NP (·), NR (·),
fsP (·), fsR (·), z(t) ∈ L∞, (17) and (18) can be utilized
to prove that ṖP (·), ṖR(·) ∈ L∞. Given that the facts
that z(t), β1 (PP ), β3 (PR), PP (·), PR(·) ∈ L∞ and the as-
sumption given in (27), we can prove that ∇zg (·), ∇PP g (·),
∇PRg (·) ∈ L∞; hence, given that g(·), ṖP (·), ṖR(·) ∈ L∞,
we can also conclude that ζ (·), ξ (·) ∈ L∞. After taking the
time derivative of (23-26) and utilizing the facts that ṖP (·),
ṖR(·) ∈ L∞, it is clear that β̇0 (·) , β̇1 (·) , β̇2 (·) , β̇3 (·) ∈
L∞. By taking the time derivative of (21) and (22) and
utilizing the facts that ẍ(t), ṖP (·), ṖR(·) ∈ L∞, we can also
conclude that ṄP (·), ṄR (·) ∈ L∞.

To facilitate further analysis, we utilize (19-26), (32),
and (45) and performing some algebraic manipulation to
obtain the following expression

ζ =
kP e

γz

x (eγz + 1)
2 (1 + γz + eγz)

p
PS − PP (67)

+
kP e

γz

x (eγz + 1)2
¡
1− γz + e−γz

¢p
PP − PT

+
kRe

−γz

(L− x) (e−γz + 1)2
¡
1− γz + e−γz

¢p
PS − PR

+
kRe

−γz

(L− x) (e−γz + 1)2 (1 + γz + eγz)
p
PR − PT .

Based on (27), it is clear from (67) that

ζ > ε1 if 1 ≥ γ |z(t)| (68)

where ε1 ∈ R is some positive constant. Based on the
previous boundedness arguments, we can now utilize (48),
(51), (52), (53), and (68) to prove that ḟd(t), F̈d(t), żd(t),
η̇z(t) ∈ L∞. Given that żd(t), η1(t) ∈ L∞, we can uti-
lize (33) to prove that ż(t) ∈ L∞. Since ∇zg (·), ∇PP g (·),
∇PRg (·), ż(t), ṖP (·), ṖR(·) ∈ L∞, (43) can be utilized to
prove that ġ(·) ∈ L∞. After taking the time derivative of
the expressions given in (19) and (20) as follows

ḟsP = β̇0 +
eγz

³
β̇1 (e

γz + 1) + (β1 + 1) γż
´

(eγz + 1)
2 (69)

ḟsR = β̇2 +
e−γz

³
β̇3 (e

−γz + 1)− (β3 + 1) γż
´

(e−γz + 1)2
(70)

and utilizing the previous boundedness arguments, we can
prove that ḟsP (·), ḟsR (·) ∈ L∞. After taking the time
derivative of (17) and (18) to obtain the following expres-
sions

P̈P =
βe
APx

³
ṄP + kP ḟsP z + kP fsP ż

´
(71)

− βeẋ

APx2
(NP + kP fsP z)

P̈R =
βe

AR (L− x)
³
ṄR − kRḟsRz − kRfsRż

´
(72)

+
βeẋ

AR (L− x)2
(NR − kRfsRz) ,

the facts that ẋ(t), ṄP (·), ṄR (·), ḟsP (·), ḟsR (·), z(t),
ż(t) ∈ L∞ can be used to prove that P̈P (·), P̈R(·) ∈ L∞.
Given the previous boundedness arguments and the de-
velopment given in the appendix, we can now prove that

F
(3)
d (t), f̈d(t), ζ̇ (·), ξ̇(·), and z̈d(t) ∈ L∞; hence, from (56)
and (55), we can conclude that η̇1(t), u(t) ∈ L∞. Based on
the fact that the closed-loop system is bounded provided
the sufficient condition given in (59) is satisfied, the result
given in (58) can now be obtained from (66).
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SUMMARY

The selection of a hydraulic flow control valve and ac-
companying actuation strategy is dependent on the system
response requirements, permissible pressure drop, and hard-
ware cost. Although high bandwidth servo-valves offer fast
response times, the higher expense, susceptibility to debris,
and pressure drop may be prohibitive. The performance of
an economical proportional directional control valve, with
spool position feedback, has been investigated in this paper
using a nonlinear control strategy for the precise hydraulic
cylinder positioning of a mechanical load. Analytical and
empirical mathematical models were developed and exper-
imentally validated to describe the transient behavior of
the integrated components. An exponential tracking con-
trol algorithm with integrator backstepping was designed to
accommodate inherent system nonlinearities. Future work
will target testing the developed algorithm on an experi-
mental testbed to demonstrate the performance of the non-
linear controller. Further research into servo-valves is war-
ranted to fully explore the limitations of proportional direc-
tional control valves.
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APPENDIX

The expression for z̈d(t) is given as follows

z̈d =
1

βeζ

³
f̈d − βeżξ − βezξ̇ + k3 (βeζη1 − k3ηz − ηf )

´
(73)

+
1

βeζ
(ηz − k2ηf − r)− ζ̇

βeζ2

³
ḟd − βezξ + k3ηz + ηf

´
where f̈d(·) is given by the following expression

f̈d = F
(3)
d − βe

Ã
−ṄP
x2

+
2ẋNP
x3

− ṄR

(L− x)2
!
ẋ (74)

+
2βeẋ

2NR

(L− x)3 + βe

Ã
NP
x2

+
NR

(L− x)2
!
ẍ

+
βeẋ

mL

Ã
−AP
x2

+
AR

(L− x)2
!
(F −N)

+
βe
mL

µ
AP
x
+

AR
L− x

¶³
Ḟ − Ṅ

´
+βeẋ

Ã
−(Cip + Cep)

x2
+

Cip

(L− x)2
!
ṖP

−βeẋ
Ã
−Cip
x2

+
Cip + Cep

(L− x)2
!
ṖR

+βe

µ
Cip + Cep

x
+

Cip
L− x

¶
P̈P

−βe
µ
Cip
x
+
Cip + Cep
L− x

¶
P̈R

+k2 (η̇z − k2η̇f − ṙ) + 1

mL
(η̇f − k1ṙ)

where F
(3)
d (·) is given as follows

F
(3)
d = mL

³
x
(5)
d + αx

(4)
d

´
(75)

+

µ
bL
mL
− α

¶Ã
βe

Ã
ṄP
x
− ẋNP

x2

!
− kLẍ

!

+

µ
bL
mL
− α

¶Ã
βe

Ã
− ṄR
L− x −

NRẋ

(L− x)2
!!

+

µ
bL
mL
− α

¶
(βe (ġz + gż))

+
1

mL

µ
kL − bL

µ
bL
mL
− α

¶¶³
Ḟ − Ṅ

´
+
k1
mL

µ
η̇z − k2η̇f − ṙ − k1

mL
(η̇f − k1ṙ)

¶

and ζ̇ (·) and ξ̇(·) are given by the following expressions

ζ̇ =
d (∇zg)
dt

z + (∇zg) ż + ġ (76)

ξ̇ =
d (∇xg)
dt

ẋ+
d (∇PP g)

dt
ṖP +

d (∇PRg)
dt

ṖR (77)

(∇xg) ẍ+ (∇PP g) P̈P + (∇PRg) P̈R

where

d (∇zg)
dt

=
kPγ

2żeγz (β1 + 1) + kPγe
γzβ̇1

x (eγz + 1)2
(78)

−kPγe
γz (β1 + 1)

x2 (eγz + 1)3
(ẋ (eγz + 1) + 2xγżeγz)

+
kRγ

2że−γz (β3 + 1)− kRγe−γzβ̇3
(L− x) (e−γz + 1)2

− kRγe
−γz (β3 + 1)

(L− x)2 (e−γz + 1)3
· ¡ẋ ¡e−γz + 1¢+ 2γż(L− x)e−γz¢

d (∇xg)
dt

=
kRḟsR

(L− x)2 +
2ẋkRfsR

(L− x)3 −
kP ḟsP
x2

+
2ẋkP fsP
x3

(79)

d (∇PP g)
dt

= −
Ã
kP (ẋ (e

γz + 1) + xγżeγz)

2x2 (eγz + 1)2

!
(80)

·
µ

1√
PP − PT

− eγz√
PS − PP

¶
− kP
2x (eγz + 1)

Ã
ṖP

2 (PP − PT )
3
2

+
γżeγz√
PS − PP

+
ṖP e

γz

2 (PS − PP )
3
2

!
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d (∇PRg)
dt

=
kR (ẋ (e

−γz + 1) + γż(L− x)e−γz)
2(L− x)2 (e−γz + 1)2 (81)µ
1√

PR − PT
− e−γz√

PS − PR

¶
− kR
2(L− x) (e−γz + 1)

Ã
ṖR

2 (PR − PT )
3
2

− γże−γz√
PS − PR

+
ṖRe

−γz

2 (PS − PR)
3
2

!

and P̈P (·), P̈R(·) are given in (71) and (72), respectively.
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